Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Physical and geometrical interpretation of the Jordan-Hahn and the Lebesgue decomposition property


The Jordan-Hahn decomposition and the Lebesgue decomposition, two basic notions of classical measure theory, are generalized for measures on orthomodular posets. The Jordan-Hahn decomposition property (JHDP) and the Lebesgue decomposition property (LDP) are defined for sections Δ of probability measures on an orthomodular poset L. If L is finite, then these properties can be characterized geometrically in terms of two parallelity relations defined on the set of faces of Δ. A section Δ is shown to have the JHDP if and only if every pair of f-parallel faces is p-parallel; it is shown to have the LDP if and only if every pair of disjoint faces is p-parallel. It follows from these results that the LDP is stronger than the JHDP in the setting of finite orthomodular posets. Mielnik's convex scheme of quantum theory provides the frame for a physical interpretation of these results.

This is a preview of subscription content, log in to check access.


  1. 1.

    E. M. Alfsen,Compact Convex Sets and Boundary Integrals, (Springer, Berlin, 1971).

  2. 2.

    E. G. Beltrametti and G. Cassinelli,The Logic of Quantum Mechanics (Encyclopedia of Mathematics and Its Applications, Vol. 15), (Addison Wesley, Reading, Massachusetts, 1981).

  3. 3.

    C. Berge,Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).

  4. 4.

    A. Brøndsted,An Introduction to Convex Polytopes (Graduate Texts in Mathematics 90) (Springer, New York, 1983).

  5. 5.

    E. Christensen, “Measures on projections and physical states,”Commun. Math. Phys. 86, 329–338 (1982).

  6. 6.

    J. C. Dacey, “Orthomodular Spaces,” Doctoral Dissertation, University of Massachusetts, 1968.

  7. 7.

    D. J. Foulis and C. H. Randall, “Operational statistics. I. Basic concepts,”J. Math. Phys. 13, 1667–1675 (1972).

  8. 8.

    P. R. Halmos,Measure Theory (Van Nostrand-Reinhold, Princeton, New Jersey, 1950).

  9. 9.

    M. F. Janowitz, “Constructible lattices,”J. Aust. Math. Soc. 14, 311–316 (1972).

  10. 10.

    G. Kalmbach,Orthomodular Lattices (Academic Press, London, 1983).

  11. 11.

    M. P. Kläy, “Quantum logic properties of hypergraphs,”Found. Phys. 17, 1018–1036 (1987).

  12. 12.

    B. Mielnik, “Generalized quantum mechanics,”Commun. Math. Phys. 37, 221–256 (1974).

  13. 13.

    G. T. Rüttimann, “Stable faces of a polytope,”Bull. Am. Math. Soc. 82, 314–316 (1976).

  14. 14.

    G. T. Rüttimann, “Jordan-Hahn decomposition of signed weights on finite orthogonality spaces,”Comment. Math. Helv. 52, 129–144 (1977).

  15. 15.

    G. T. Rüttimann, “Facial sets of probability measures,”Prob. Math. Stat. 6, 99–127 (1985).

  16. 16.

    G. T. Rüttimann, “Expectation functionals of observables and counters,”Rep. Math. Phys. 21, 213–222 (1985).

  17. 17.

    G. T. Rüttimann, “The approximate Jordan-Hahn decomposion,” preprint, University of Berne, 1987.

  18. 18.

    G. T. Rüttimann and C. Schindler, “The Lebesgue decomposition of measures on orthomodular posets,”Q. J. Math. Oxford 37, 321–345 (1986).

  19. 19.

    G. T. Rüttimann and C. Schindler, “On σ-convex sets of probability measures,”Bull. Pol. Acad. Sci. Math. 35, 583–595 (1987).

  20. 20.

    C. Schindler, “Decompositions of measures on orthologics,” Doctoral Dissertation, Universität Bern, 1986.

  21. 21.

    F. J. Yeadon, “Measures on projections inW*-algebras of type II,”Bull. Lond. Math. Soc. 15, 139–145 (1983).

  22. 22.

    F. J. Yeadon, “Finitely additive measures on projections in finiteW*-algebras of type II,”Bull. Lond. Math. Soc. 16, 145–150 (1984).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schindler, C. Physical and geometrical interpretation of the Jordan-Hahn and the Lebesgue decomposition property. Found Phys 19, 1299–1314 (1989).

Download citation


  • Probability Measure
  • Quantum Theory
  • Physical Interpretation
  • Geometrical Interpretation
  • Measure Theory