Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

An integrated approach to evaluating the fracture toughness of irradiated nuclear reactor pressure vessels

Abstract

Current methods of predicting the inservice fracture toughness of nuclear reactor pressure vessels subject to irradiation embrittlement are briefly reviewed, and a new and integrated approach is proposed. This approach is based on the use of a wide variety of information, including the rapidly emerging understanding of the fundamental mechanisms of fracture in the ductile to brittle transition region as well as the microstructurally-mediated processes leading to embrittlement. However, the focus is on advanced, nonintrusive characterization methods for measuring composition, coarse and fine scale microstructure, and mechanical properties using small sample biopsies from operating vessels.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    L. E. Steele, Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels, IAEA Technical Report Seris, No. 163 (1975).

  2. 2.

    United States Nuclear Regulatory Commission,Regulatory Guide 1.99: Radiation Embrittlement to Reactor Vessel Materials (U.S. Government Printing Office, Washington, D.C., 1988).

  3. 3.

    G. R. Odette and G. E. Lucas,An Experimental Investigation of Kinetic Aspects of Neutron Irradiation Embrittlement of Light Water Reactor Pressure Vessel Steels, EPRINP 6114, Electric Power Research Institute (1989).

  4. 4.

    G. R. Odette and G. E. Lucas, Irradiation embrittlement of reactor pressure vessel steels: Mechanisms, models and data correlations, inRadiation Embrittlement of Nuclear Reactor Pressure Vessel Steels: An International Review II, ASTM-STP-909, L. E. Steele, ed. (American Society for Testing and Materials, Philadelphia, PA, 1986), p. 206.

  5. 5.

    G. R. Odette, Radiation induced microstructural evolution in reactor pressure vessel steels, inMicrostructure of Irradiated Materials, Mater. Res. Soc. Symp. Proc., Vol. 373, I. Robertson, L. Rehn, S. Zinkle, and W. Phythian, eds. (1995), p. 137.

  6. 6.

    G. R. Odette, Modeling of Irradiation Embrittlement in Reactor Pressure Vessel Steels, Neutron Irradiation Effects in Reactor Pressure Vessel Steels and Weldments, IAEA Technical Report Series, M. Davies, ed., Vienna (in press).

  7. 7.

    S. T. Rolfe and J. M. Barsom,Fatigue and Fracture Control in Structures (Prentice-Hall, New Jersey, 1978), p. 442.

  8. 8.

    R. Nanstad, D. Alexander, W. Corwin, E. Eason, G. R. Odette, R. Stoller, and J. Wang,Preliminary Rreview of Data Regarding Chemical Composition and Thermal Embrittlement of Reactor Vessel Steels, ORNL/NRC/LTRE-95-1 (Oak Ridge National Laboratory, 1995).

  9. 9.

    R. K. Nanstad, D. E. McCabe, F. M. Haggag, K. O. Bowman, and D. J. Dowling, Statistical analysis of fracture toughness results for two irradiated high-copper welds, inEffects of Irradiation on Materials, ASTM STP 1125, R. E. Stoller, A. S. Kumar and D. S. Gelles, eds. (American Society for Testing and Materials, Philadelphia, PA, 1992), p. 270.

  10. 10.

    G. R. Odette, P. M. Lombrozo, P. M. Wullaert, and R. A. Wullaert, The relationship between irradiation hardening and embrittlement of pressure vessel steels, inEffects of Irradiation on Materials, ASTM-STP-870, F. Garner and J. Perrin, eds. (American Society for Testing and Materials, Philadelphia, PA, 1985), p. 841.

  11. 11.

    W. J. Phythian and C. English,J. Nucl. Mater. 205:162 (1993).

  12. 12.

    W. R. Corwin and G. E. Lucas, eds.,The Use of Small-Scale Specimens for Testing Irradiated Material, ASTM-STP-888 (American Society for Testing and Materials, Philadelphia, PA, 1986).

  13. 13.

    P. Jung and H. Ullmaier, eds., Proceedings of the IEA International Symposium on Miniaturized Specimens for Testing Irradiated Materials, KFA Julich, September 22–23 (1994).

  14. 14.

    W. Corwin, F. Haggag, W. Server, eds.,Small Specimen Techniques Applied to Nuclear Reactor Vessel Thermal Annealing and Plant Life Extension, ASTM-STP-1104 (American Society for Testing and Materials, Philadelphia, PA, 1993).

  15. 15.

    K. Edsinger, G. R. Odette, and G. E. Lucas, The Use of Confocal Microscopy and Fracture Reconstruction to Obtain StructurallyRelevant Fracture Parameters, Proceedings of the IEA International Symposium on Miniaturized Specimens for Testing Irradiated Materials, KFA Julich, September 22–23, 1994 (1995), p. 150.

  16. 16.

    J. C. Van Duysen, J. Bourguin, C. Janot, and J. M. Penisson, inEvolution of microstructure of PWR pressure vessel steels for the CHOOZ: A reactor surveillance program, ASTM-STP-1125, R. E. Stoller, A. S. Kumar, and D. S. Gelles, eds. (American Society for Testing and Materials, Philadelphia, PA, 1992), p. 117.

  17. 17.

    W. A. Pavinich, G. R. Odette, B. Wirth, S. Spooner, and G. Lucas, inSANS study of Linde 80 RVSP welds, ASTM-STP-1325, R. Nanstad, M. L. Hamilton, F. Garner, and A. Kumar, eds. (American Society for Testing and Materials) (submitted).

  18. 18.

    E. Mader, G. R. Odette, and G. E. Lucas, Kinetics of Irradiation Embrittlement and Post Irradiation Annealing of Nuclear Reactor Pressure Vessel Steels, NUREG Report (in preparation).

  19. 19.

    E. Mader, Kinetics of Irradiation Embrittlement and the Post-Irradiation Annealing of Nuclear Reactor Pressure Vessel Steels, PhD thesis, Department of Materials, U.C. Santa Barbara (1995).

  20. 20.

    J. F. Mancuso, J. A. Spitznagel, R. P. Shogan, and J. R. Holland, Correlation between microhardness, tensile properties and notch ductility of irradiated ferritic steels, inEffects of Irradiation on Materials, ASTM STP 725, D. Kramer, H. Brager, and J. Perrin, eds. (American Society for Testing and Materials, Philadelphia, PA, (1981), p. 38.

  21. 21.

    G. E. Lucas and G. R. Odette, Application of Small Specimen Techniques to Power Plant Reliability and Life Extension Problems, Proceedings of the International Conference on Nuclear Power Plant Aging, Availability Factor and Reliability Analysis, ASM (1985), p. 385.

  22. 22.

    G. E. Lucas, G. R. Odette, R. Maiti, and J. W. Sheckherd, Tensile properties of irradiated pressure vessel steels, inEffects of Irradiation on Materials, ASTM STP 725, F. Garner, C. Henager, and N. Igata, eds. (American Society for Testing and Materials, Philadelphia, PA, 1987), p. 379.

  23. 23.

    T. J. Williams, D. Ellis, D. Swan, J. McGuire, S. Walley, C. English, J. Venables, and P de la cour Ray, The Influence of Copper, Nickel and Irradiation Temperature on the Irradiation Shift of Low Alloy Steels, Proceedings of the Second International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, ANS (1986), p. 393.

  24. 24.

    E. Eason, J. Wright, E. Nelson, G. R. Odette, and E. Mader,Models for Embrittlement and Annealing of Reactor Pressure Vessel Steels, NUREG/CR-6327 (U.S. Nuclear Regulatory Commission, 1995).

  25. 25.

    A. D. Amayev, A. M. Kryukov, V. E. Levitz, P. A. Platonov, M. F. Rogov, and M. A. Sokolov, Radiation Damage and Recovery inVVER-440 Vessel Materials, Proc. of Int'l Conf. PLEX-93, 11/29-12/1, 1993, Nucl. Eng. Intl. (to be published).

  26. 26.

    P. Au, G. E. Lucas, J. W. Sheckherd, and G. R. Odette, Flow property measurements from instrumented hardness tests, inNondestructive Evaluation in the Nuclear Industry (ASM, Metals Park, Ohio, 1981), p. 597.

  27. 27.

    B. Wirth, K. Edsinger, G. R. Odette, and G. E. Lucas, Evaluation of embrittlement in a pressure vessel steel by fracture reconstruction, inEffects of Irradiation on Materials, ASTM-STP-1270, D. Gelles, R. Nanstad, A. Kumar, and E. Little, eds. (American Society for Testing and Materials, Philadelphia. PA, 1996), p. 706.

  28. 28.

    K. Edsinger, G. R. Odette, G. E. Lucas, and B. Wirth, The effect of constraint on toughness of a pressure vessel steel,ibid.in, p. 670.

  29. 29.

    T. R. Mager,et al., Feasibility and Methodology for Thermal Annealing an Embrittled Reactor Vessel, EPRI NP-2712-2 (Electric Power Research Institute, Palo Alto, CA, 1982).

  30. 30.

    J. R. Hawthorne, B. H. Menke, and A. C. Hiser,Light Water Reactor Pressure Vessel Dosimetry Program, Post Irradiation Notch Ductility and Tensile Strength Determination for PSF Simulated Through-Wall Specimen Capsule, NUREG/CR-3457 (U.S. Nuclear Regulatory Commission, 1984).

  31. 31.

    G. R. Odette and G. E. Lucas, Combining Micromechanics and Finite Element Methods to Predict Fracture from Small Specimen Data, Proceedings of the IEA International Symposium on Miniaturized Specimens for Testing Irradiated Materials, KFA Julich, September 22–23, 1994 (1995), p. 160.

  32. 32.

    K. Wallin, The scatter inK lc results,Eng. Fract. Mech. 19–6:1085 (1984).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Odette, G.R., Lucas, G.E. An integrated approach to evaluating the fracture toughness of irradiated nuclear reactor pressure vessels. J Nondestruct Eval 15, 137–150 (1996). https://doi.org/10.1007/BF00732041

Download citation

Key words

  • Irradiation embrittlement
  • reactor pressure vessels
  • toughness