Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Nonideal quantum measurements

Abstract

A partial ordering in the class of observables (∼ positive operator-valued measures, introduced by Davies and by Ludwig) is explored. The ordering is interpreted as a form of nonideality, and it allows one to compare ideal and nonideal versions of the same observable. Optimality is defined as maximality in the sense of the ordering. The framework gives a generalization of the usual (implicit) definition of self-adjoint operators as optimal observables (von Neumann), but it can, in contrast to this latter definition, be justified operationally. The nonideality notion is compared to other quantum estimation theoretic methods. Measures for the amount of nonideality are derived from information theory.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    G. Allcock,Ann. Phys. (N.Y.) 53, 311 (1969).

  2. 2.

    K. L. Chung,Markov Chains with Stationary Transition Probabilities, 2nd edn. Springer, Berlin 1967).

  3. 3.

    E. Davies,J. Funct. Anal. 6, 318 (1970).

  4. 4.

    E. Davies,Quantum Theory of Open Systems (Academic, London, 1976).

  5. 5.

    E. Davies and J. Lewis,Commun. Math. Phys. 17, 239 (1969).

  6. 6.

    P. Dirac,The Principles of Quantum Mechanics (Clarendon, Oxford, 1930).

  7. 7.

    C. Helstrom,Quantum Detection and Estimation Theory (Academic, New York, 1976).

  8. 8.

    A. Holevo,Trans. Mosc. Math. Soc. 26, 133 (1972).

  9. 9.

    A. Holevo,Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982).

  10. 10.

    G. Jameson,Ordered Linear Spaces (Lecture Notes in Mathematics, Vol. 141) (Springer, New York, 1970).

  11. 11.

    P. Kelly and M. Weiss,Geometry and Convexity (Wiley, New York, 1979).

  12. 12.

    P. Kruszynski and W. de Muynck,J. Math. Phys. 28, 1761 (1987).

  13. 13.

    R. Loudon,Quantum Theory of Light, 2nd edn. (Clarendon, Oxford, 1983).

  14. 14.

    G. Ludwig,Foundations of Quantum Mechanics, Vol. I (Springer, Berlin, 1983).

  15. 15.

    H. Martens and W. de Muynck, “The inaccuracy principle,”Found. Phys. 20, 357 (1990).

  16. 16.

    R. McEliece,The Theory of Information and Coding (Addison-Wesley, London, 1977).

  17. 17.

    W. de Muynck and J. Koelman,Phys. Lett. A 98, 1 (1983).

  18. 18.

    J. von Neumann,Mathematische Grundlagen der Quantenmechanik (Springer, New York, 1932, 1982).

  19. 19.

    J. Ortega,Matrix theory (Plenum, New York, 1987).

  20. 20.

    E. Prugovečki,J. Phys. A 10, 543 (1977).

  21. 21.

    E. Prugovečki,Stochastic Quantum Mechanics and Quantum Spacetime. (Reidel, Dordrecht, 1984).

  22. 22.

    J. Schwinger,Proc. Natl. Acad. Sci. USA 46, 570 (1960).

  23. 23.

    F. Schroeck,Int. J. Theor. Phys. 28, 247 (1989).

  24. 24.

    C. Shannon,Bell Syst. Tech. J. 27, 379 (1948).

  25. 25.

    C. Shannon,Inform. Control 1, 390 (1958).

  26. 26.

    J. Uffink and J. Hilgevoord,Physica B 151, 309 (1988).

  27. 27.

    W. Wootters,Phys. Rev. D 19, 473 (1979).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martens, H., de Muynck, W.M. Nonideal quantum measurements. Found Phys 20, 255–281 (1990). https://doi.org/10.1007/BF00731693

Download citation

Keywords

  • Information Theory
  • Theoretic Method
  • Quantum Measurement
  • Quantum Estimation
  • Optimal Observable