Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Identification of signals in the context of acoustic emission in concrete


The study presented in this paper is placed in the context of the frequency analysis of acoustic emission in concrete. The purpose is to study the ability to identify an acoustic emission event by deducing its spectrum from a detected signal. The identification is carried out progressively so as to separate the various functions involved in the acoustic emission process, and to approach the usual conditions of acoustic emission processing during fracture tests of concrete specimens. Impulses of different forms are generated on the surface of concrete test specimens, and the signals detected are analyzed. The identification of signals takes into account the frequency response of the transducers and the wave attenuation as function of the frequency.

This is a preview of subscription content, log in to check access.


  1. 1.

    A. K. Mal. Rayleigh waves from a moving thrust fault,Bull. Seism. Soc. Am. 62:751–762 (1972).

  2. 2.

    A. K. Mal. Application of continuum mechanics,Proc. ASME Symposium on Applied Mechanics in Earthquake Engineering, ASME-AMD-8, (ASME, New York, (1974)), pp. 205–223.

  3. 3.

    N. A. Levy and A. K. Mal. Calculation of ground motion in a three-dimensional model of 1966 Parkfield earthquake,Bull. Seism. Soc. Am. 66:405–423 (1976).

  4. 4.

    A. K. Mal, T. Kundu, and P.-C. Xu. On the surface response of a multilayered solid to a dislocation source,Proc. Symposium on Earthquake Source Modeling, Group Motion and Structural Response, ASME-AMD-80 (ASME, New York, (1984)), pp. 29–48.

  5. 5.

    M. Ohtsu and K. Ono. The generalized theory and source representations of acoustic emission,J. Acoust. Emission 5(4): 124–132 (1986).

  6. 6.

    K. Aki and P. G. Richards.Quantitative Seismology Theory and Methods, Vol. II (W. H. Freeman and Company, San Francisco, 1980).

  7. 7.

    K. P. Kim and W. Sachse. Characteristics of acoustic emission signal from identation cracks in glass, inProgress in Acoustic Emission II, M. Onoeet al. eds. (JSNDI, Tokyo, (1984)), pp. 163–172.

  8. 8.

    A. K. Maji, C. Ouyang, and S. P. Shah. Fracture mechanisms of quasi-brittle materials based on acoustic emission,J. Mater. Res. 5(4):206–217 (1990).

  9. 9.

    M. Ohtsu and K. Ono. Acoustic emission wave form in a half space, inProgress in Acoustic Emission II, M. Onoeet al. eds. (JSNDI, Tokyo, (1984)), pp. 132–139.

  10. 10.

    Y. Niwa, S. Kobayashi, and M. Ohtsu. Frequency analysis of acoustic emission,Proc. 23rd Japan Congress Mater. Res. 347–351 (1980).

  11. 11.

    M. Izumi, H. Mihashi, N. Nomura, and T. Ogata. Experimental considerations in frequency properties of acoustic emission of concrete,Proc. 23rd Japan Congress mater. Res 186–190 (1980).

  12. 12.

    D. M. Egle. Diffuse waves in solids and acoustic emission, inAdvances in Acoustic Emission, H. L. Dunegan and W. F. Hartman, eds. (Dunhart Publishers, (1979)), pp. 15–21.

  13. 13.

    J.-M. Berthelot, M. Ben Souda, and J.-L. Robert. Frequency response of transducers used in acoustic emission in concrete,NDT & E. Int. 25(6):279–285 (1992).

  14. 14.

    J.-M. Berthelot, M. Ben Souda, and J.-L. Robert. Study of wave attenuation in concrete,J. Mater. Res. 8(9):2344–2353 (1993).

  15. 15.

    L. R. F. Rose. On the AE due to the fracture of brittle inclusions,J. Nondestr. Eval. 1:149 (1980).

  16. 16.

    C. B. Scruby. Quantitative AE techniques,Research Techniques in NDT, Chap. 4, R. S. Sharpe, ed. (Academic Press), p. 141 (1985).

  17. 17.

    T. Aizawa, T. Kishi, and F. Mudry. AE wave characterization: A numerical simulation of the experiments on cracked and uncracked specimens,J. Acoust. Emission 6(2):85–92 (1987).

  18. 18.

    M. Ben Souda. Contribution à l'analyse par émission acoustique de l'endommagement dans le béton,Ph.D. thesis, Le Mans (1989).

  19. 19.

    J.-M. Berthelot, M. Ben Souda, and J.-L. Robert. Frequency analysis of acoustic emission signals in concrete,J. Acoust. Emission 11(1):11–18 (1993).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Berthelot, J.-., Souda, M.B. & Robert, J.L. Identification of signals in the context of acoustic emission in concrete. J Nondestruct Eval 13, 63–73 (1994).

Download citation

Key words

  • Concrete
  • acoustic emission
  • fracture
  • damage