Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Structural aspects of fatigue crack growth in VT3-1 titanium alloy

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    R. O. Ritchie, “Near-threshold fatigue crack propagation in ultrahigh steel: influence of load ratio and cyclic strength,” Trans. ASME J. Eng. Mater Technol.,99, No. 3, 195–210 (1977).

  2. 2.

    G. R. Yoder, F. H. Froes, and D. Eylon, “Effect of microstructure strength and oxygen content of fatigue crack growth rate of Ti-4.5Al-5.0Mo-1.5Cr (CORONA 5),” Met. Trans.,A15, No. 1, 183–197 (1984).

  3. 3.

    G. R. Yoder, L. A. Cooly, and T. W. Crooker, “50-fold difference in region II fatigue crack propagation resistance of titanium alloys. A grain size effect,” Trans. ASME J. Eng. Mater. Technol.,101, No. 1, 86–90 (1979).

  4. 4.

    L. R. Botvina, S. Ya. Yarema, V. V. Grechko, and L. V. Limar', “Kinetics of fatigue failure of VT3-1 titanium alloy,” Fiz.-Khim. Mekh. Mater., No. 6, 39–45 (1981).

  5. 5.

    D. Broek, Fundamentals of Fracture Mechanics [in Russian], Vysshaya Shkola, Moscow (1980).

  6. 6.

    E. Hornbogen and K.-H. Zum Gahr, “Microstructure and fatigue crack growth in a γ-Fe-Ni-Al alloy,” Acta Met.,24, No. 6, 581–592 (1976).

  7. 7.

    MR 149-36-81, Procedure Instructions. Quantitative Metallographic Analysis of Two-Phase Titanium Alloys [in Russian], Moscow (1981).

  8. 8.

    L. R. Botvina, G. V. Klevtsov, V. M. Markochev, and A. P. Bobrinskii, “Correlation of the size of the zone of plastic deformation and the rate of fatigue failure of 15Kh2MFA steel at low temperatures,” Probl. Prochn., No. 7, 27–30 (1982).

  9. 9.

    O. N. Romaniv and Yu. V. Zima, “Quantitative microfractographic fatigue failure of metals,” in: Standardization of the Fractographic Method of Estimating the Rate of Fatigue Failure of Metals [in Russian], Standartov, Moscow (1984).

  10. 10.

    N. M. Grinberg, Relationships Governing the Growth of Fatigue Cracks in IIa and IIb Stages [in Russian], Preprint No. 28-83, Physicotechnical Institute of Low Temperatures, Academy of Sciences of the Ukrainian SSR, Kharkov (1983).

  11. 11.

    E. A. Borisova, G. A. Bochvar, M. Ya. Brun, et al., Metallography of Titanium Alloys. Series Titanium Alloys [in Russian], Metallurgiya Moscow (1980).

Download references

Author information

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, No. 1, pp. 83–88, January–February, 1989.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Limar', L.V., Botvina, L.R. & Yarema, S.Y. Structural aspects of fatigue crack growth in VT3-1 titanium alloy. Mater Sci 25, 73–77 (1989). https://doi.org/10.1007/BF00727931

Download citation

Keywords

  • Fatigue
  • Titanium
  • Fatigue Crack
  • Titanium Alloy
  • Fatigue Crack Growth