Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Simultaneous determination of benomyl and morestan residues in waters by synchronous solid-phase spectrofluorimetry


In this paper a new, sensitive, and simple method for simultaneous determination of pesticides morestan and benomyl at trace levels in waters is reported. Both chemicals, showing native fluorescence in solution at neutral medium, were fixed on C-18 silica gel at pH 1, giving a fluorescent system. The benomyl-morestan-silica gel system, after dry, was packed in a 1-mm silica cell and its synchronous fluorescence spectra were recorded at δλ=80 nm for determination of benomyl and δλ=25 nm for determination of morestan. Measurements of fluorescence were performed at λ1=289 nm and λ2=367 nm for benomyl and morestan analysis, respectively. The applicable concentration ranges were from 0.5 to 15.0 ng·ml−1 for benomyl and from 0.6 to 15.0 ng·ml−1 for morestan, with relative standard deviations of 1.2 and 1.5% for benomyl and morestan, respectively, being 0.15 and 0.18 ng·ml−1 its respective detection limits. The method was applied to the simultaneous determination of residues of both pesticides in water of different provenances.

This is a preview of subscription content, log in to check access.


  1. 1.

    C. de Liñan (1990)Vademecum de productos fitosanitarios y nutricionales, Embajadores, Madrid.

  2. 2.

    C. R. Worthing (Ed.) (1983)The Pesticide Manual, 7th ed.

  3. 3.

    M. Chiba and F. Doornbos (1974)Bull. Environ. Contam, Toxicol. 11, 273.

  4. 4.

    D. J. Austin, K. A. Lord, and I. H. Williams (1976)Pestic. Sci. 7, 211.

  5. 5.

    P. C. Bordalaye and W. B. Wheeler (1985)J. Chromatogr. 330, 430.

  6. 6.

    T. D. Spittler, R. A. Marafiotti, and L. M. Lahr (1984)J. Chromatogr. 317, 527.

  7. 7.

    R. P. Singh, C. H. Marvin, I. D. Brindle, C. D. Hall, and M. Chiba, (1992)J. Agr. Food Chem. 40, 1303.

  8. 8.

    Y. Francouer and V. Mallet (1976)J.A.O.A.C. 59, 172.

  9. 9.

    V. N. Mallet, C. LeBel, and D. P. Surette (1974)Analusis 9, 643.

  10. 10.

    R. Brennecke and K. Vogeler (1984)Pflanzenschutz-Nachr 37, 46.

  11. 11.

    J. L. Bernal, M. J. del Nozal, J. Atienza, and J. J. Jimenez (1992)Chromatographia 33, 67.

  12. 12.

    F. E. Hearth, D. E. Otto, and G. A. Gunther (1966)J.A.O.A.C. 49, 774.

  13. 13.

    C. H. Marvin, I. D. Brindle, R. P. Singh, C. D. Hall, and M. Chiba (1990)J. Chromatogr. 518, 242.

  14. 14.

    F. Capitán, E. J. Alonso, R. Avidad, L. F. Capitán-Vallvey, and J. L. Vilchez (1993)Anal. Chem. 65, 1336.

  15. 15.

    J. L. Vilchez, A. Navalón, R. Avidad, J. Rohand, and L. F. Capitán-Vallvey (1993)Fresenius J. Anal. Chem. 345, 716.

  16. 16.

    L. F. Capitán-Vallvey, E. J. Alonso, R. Avidad, M. del Olmo, and J. L. Vilchez (1993)Anal. Sci. 9, 117.

  17. 17.

    IUPAC (1976)Pure Appl. Chem. 45, 105.

  18. 18.

    Guidelines for Data Acquisition and Data Quality Evaluation in Environmental Chemistry (1976)Anal. Chem. 52, 2242.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vilchez, J.L., Navalón, A., Rohand, J. et al. Simultaneous determination of benomyl and morestan residues in waters by synchronous solid-phase spectrofluorimetry. J Fluoresc 5, 225–229 (1995).

Download citation

Key words

  • Benomyl and morestan determination
  • solid-phase spectrofluorimetry
  • pesticides residues
  • water analysis