Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

General aspects of the corrosion fatigue of metals and alloys

  • 49 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    G. V. Akimov, Bases for Studying Corrosion and Metal Protection [in Russian], Metallurgiya, Moscow (1946).

  2. 2.

    L. A. Glikman, Corrosion-Mechanical Strength of Metals [in Russian], Mashgiz, Moscow-Leningrad (1955).

  3. 3.

    G. V. Karpenko, “Adsorption-electrochemical hypothesis for the corrosion fatigue mechanism,” in: Metal Corrosion and Methods for Combatting It [in Russian], Oborongiz, Moscow (1955), pp. 52–70.

  4. 4.

    G. V. Karpenko, Steel Strength in a Corrosive Environment [in Russian], Mashgiz, Moscow-Kiev (1963).

  5. 5.

    G. V. Karpenko, Effect of Reactive Liquid Agents on Steel Endurance [in Russian], Izd. Akad. Nauk UkrSSR, Kiev (1955).

  6. 6.

    A. V. Ryabchenkov, Corrosion-Fatigue Strength of Steels [in Russian], Mashgiz, Moscow (1953).

  7. 7.

    V. V. Romanov, Effect of a Corrosive Agent on the Cyclic Strength of Metals [in Russian], Nauka, Moscow (1969).

  8. 8.

    A. V. Karlashov, A. N. Yarov, K. M. Gil'man, N. A. Zhidovtsev, and A. P. Batov, Corrosion-Fatigue Strength of Aluminum Alloy Drilling Pipes [in Russian], Nedra, Moscow (1977).

  9. 9.

    U. R. Evans, Corrosion, Passivity, and Metal Protection [in Russian], Metallurgizdat, Moscow-Leningrad (1941).

  10. 10.

    D. I. McAdam, Jr., Proc. Am. Soc. Test. Mater.,26, 224–230 (1926).

  11. 11.

    V. I. Pokhmurskii, Corrosion-Fatigue Strength of Steels and Ways of Improving It [in Russian], Naukova Dumka, Kiev (1974).

  12. 12.

    V. I. Pokhmurskii, Ya. M. Sirak, G. M. Filiminov, T. G. Tsvetaeva, and V. I. Stodilka, “Improving the corrosion-fatigue strenth of steel shafts by SPS,” in: Cyclic Strength and Improving the Supporting Capacity of Articles [in Russian], Perm' (1978), pp. 28–29.

  13. 13.

    V. I. Pokhmurskii, A. L. Boltarovich, K. P. Tabinskii, I. L. Meerson, and G. V. Karpenko, “Effect of some coatings on fatigue and corrosion-fatigue strength of steel Kh17N2,” Fiz.-Khim. Mekh. Mater., No. 6, 694–696 (1965).

  14. 14.

    G. V. Karpenko and F. P. Yanchishin, “Do pitaniya pro odnochasnii vpliv na vitrivalist' stall koroziinogo seredovishcha i kontsentratisii naprugi,” DokL Akad. Nauk URSR, No. 6, 525–528 (1955).

  15. 15.

    R. G. Pogoretskii, M. M. Matseiko, and G. V. Karpenko, “Effect of concentrator severity on the endurance of steel specimens in a corrosive agent,” Fiz.-Khim. Mekh. Mater., No. 1, 11–15 (1969).

  16. 16.

    R. G. Pogoretskii, M. M. Matseiko, and G. V. Karpenko, “Link between the size effect during steel corrosion fatigue with stress concentration,” Fiz.-Khim. Mekh. Mater., No. 3, 11–14 (1971).

  17. 17.

    A. V. Boltarovich, V. I. Pokhmurskii, I. L. Meierson, and G. V. Karpenko, “Corrosion-fatigue strength of some stainless steels and alloys,” in: Mechanical Fatigue Questions. Collected Papers. All-Union Scientific and Technical Conference [in Russian], Moscow (1965), pp. 21–28.

  18. 18.

    R. G. Pogoretskii, M. M. Matseiko, and G. V. Karpenko, “Effect of concentrator severity on the endurance of steel specimens in a corrosive agent,” Fiz.-Khim. Mekh. Mater., No. 1, 11–15 (1969).

  19. 19.

    G. V. Karpenko, R. G. Pogoretskii, and I. I. Kadar, “Effect of loading frequency on the fatigue and corrosion-fatigue of steel specimens with attachments,” Fiz.-Khim. Mekh. Mater., No. 3, 3–6 (1972).

  20. 20.

    A. V. Karlashov and V. P. Tokarev, “Physical nature of the frequency effect during fatigue of duralumin in air and in a corrosive agent,” Fiz.-Khim. Mekh. Mater., No. 4, 14–18 (1971).

  21. 21.

    Ya. M. Sirak, “The role of material for parts in contact in the resistance of steel to corrosion-fatigue failure,” Fiz.-Khim. Mekh. Mater., No. 2, 161–164 (1969).

  22. 22.

    I. V. Kudryavtsev, Internal Stresses as a Strength Reserve in Engineering [in Russian], Mashgiz, Moscow (1951).

  23. 23.

    Yu. I. Babei, “Mechanical treatment as a method for increasing endurance of structural alloys in reactive media,” Fiz.-Khim. Mekh. Mater., No. 2, 3–14 (1975).

  24. 24.

    G. N. Filimonov, T. G. Tsvetaeva, I. A. Nironovich, V. I. Pokhmurskii, and I. I. Kadar, “Efficiency of rolling treatment on pressed joints of large shafts with supplementary keyed fixings,” Vestn. Mashinostr., No. 3, 64–66 (1977).

  25. 25.

    G. V. Karpenko and A. V. Karlashov, “Effect of absolute specimen dimensions on the adsorption and corrosion fatigue of steel,” Dokl. Akad. Nauk SSSR,92, No. 3, 603–605 (1953).

  26. 26.

    L. A. Glikman and E. N. Kostrov, “Features of corrosion-fatigue failure in stainless steel 1Khl8N9T,” in: G. V. Karpenko (editor), Corrosion Fatigue of Metals [in Russian], Kamenyar, L'vov (1964), pp. 16–26.

  27. 27.

    G. V. Karpenko and R. G. Pogoretskii, “The size effect during fatigue and corrosion-fatigue of steels,” Dokl. Akad. Nauk SSSR,206, No. 6, 1337–1338 (1972).

  28. 28.

    V. I. Pokhmurskii, A.A. Rudakov, and M. M. Matseiko, “Cyclic strength of stainless austenitic metastable steel 0Kh14AG12M,” Fiz.-Khim. Mekh. Mater., No. 4, 114–115 (1978).

  29. 29.

    V. T. Stepurenko, Study of the Corrosion Resistance and Corrosion-Mechanical Strength of Steel 45 [in Russian], Izd. Akad. Nauk UkrSSR, L'vov (1958).

  30. 30.

    P. Paris and F. Erdogan, “Critical analysis of crack distribution laws,” Trudy AOIM, Series D, Tekh. Mekh., No. 4, 60–66 (1963).

  31. 31.

    Foreman, Kerny, and Engel, “Numerical study of crack propagation in cyclically loaded structures,” Trudy AOIM, Series D, Teor. Osn. Inzh. Raschetov, No. 3, 3–11 (1967).

  32. 32.

    F. Erdogan and M. Ratwani, “Fatigue and fracture of a cylindrical shell containing a circumferential crack,” Jut. J. Fract. Mech.,6, No. 4, 379–392 (1970).

  33. 33.

    G. P. Cherepanov and V. D. Kuliev, “Effects of loading frequency and inactive external agents of fatigue crack growth,” Probl. Prochn., No. 1, 31–36 (1972).

  34. 34.

    S. Ya. Yarema and S. I. Mikitishin, “Analytical description of the fatigue failure diagram for materials,” Fiz.-Khim. Mekh. Mater., No. 6, 47–54 (1975).

  35. 35.

    N. Ya. Yaremchenko and V. I. Pokhmurskii, “Effect of drilling solutions on crack growth rate and the nature of failure of aluminum pipes,” Fiz.-Khim. Mekh. Mater., No. 2, 13–14 (1978).

  36. 36.

    L. M. Bilyi, V. I. Pokhmurskii, M. M. Shved, and V. A. Fedorova, “Role of hydrogen in the fatigue failure kinetics of steel U8,” Fiz.-Khim. Mekh. Mater., No. 1, 67–70 (1978).

  37. 37.

    V. I. Ermolenko, “Study of the corrosive effect of environment on fatigue crack growth,” Fiz.-Khim, Mekh. Mater., No. 1, 12–15 (1979).

  38. 38.

    S. Ya. Yarema, “Study of fatigue crack growth and kinetic fatigue failure diagrams,” Fiz.-Khim. Mekh. Mater., No. 4, 3–22 (1977).

  39. 39.

    C. M. Hudson, “Literature review and inventory of the effect of environment on the fatigue behavior of metal,” Eng. Fract. Mech.,8, No. 2, 315–329 (1976).

  40. 40.

    V. I. Pokhmurskii, L. Ya. Poberezhnyi, and T. N. Kalichak, “Mechanisms of inelastic strain of metals during cyclic loading in air and in liquid media,” Fiz.-Khim. Mekh. Mater., No. 5, 3–12 (1978).

Download references

Author information

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 15, No. 4, pp. 3–13, July–August, 1979.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pokhmurskii, V.I. General aspects of the corrosion fatigue of metals and alloys. Mater Sci 15, 313–321 (1980). https://doi.org/10.1007/BF00720449

Download citation

Keywords

  • Fatigue
  • General Aspect
  • Corrosion Fatigue