Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Long-lived fluorescence probes for studying lipid dynamics: A review

  • 65 Accesses

  • 4 Citations

Abstract

A great many studies have focused on the heterogeneous packing of lipids in the bilayer matrix. However, less attention has been directed toward the temporal aspects of these lipid-lipid interactions. Studies of lipid packing fluctuations, or ‘gel-fluid’ exchange, using fluorescence probe methodologies have been limited. This limitation arises from thesubmicrosecond time scale over which the fluctuations are expected to occur. Traditionally, dynamic studies of lipid bilayers have been restricted to the nanosecond time regime, and the submicrosecond time ‘window’ has not been explored in any great depth by fluorescence methods, although persistent lipid dynamics has been evident. Probes with long fluorescence lifetimes (several hundred nanoseconds) have the potential to expand this important time ‘window,’ providing information on ‘gel-fluid’ exchange rates and insights into how important biological effectors such as proteins, cholesterol, and anesthetics affect or modulate these fluctuations. Using the long-lived fluorescence probe coronene, combined with time-resolved fluorescence methods geared toward microheterogeneity, we present a view of bilayer dynamics in an alternate time domain. Fluorescence probes are expected to inhabit an equilibrium between fluid and gel environments. Some probes remain in their respective environments throughout their excited-state lifetime, while others reside in surroundings that will change (i.e., ‘melt’). Long-lived fluorescence membrane probes can provide direct estimates of submicrosecond lipid fluctuation or ‘melt’ rates. Simple Landau modeling leads to adistribution of ‘melt’ rates and provides an attractive alternative to a simplercompartmental model where a unique lipid fluctuation of gel-fluid exchange rate is measured. Thedistribution model is probe independent (defined by thermodynamic quantities) and can be applied generally to the rotational motions of fluorescence probes embedded in the lipid bilayer.

This is a preview of subscription content, log in to check access.

Abbreviations

DMPC:

l-α-dimyristoylphosphatidylcholine

DPH:

1,6-diphenyl-1,3,5-hexatriene

DPPC:

l-α-dipalmitoylphospha-tidylcholine

DSC:

differential scanning calorimetry

EA:

fluorescence emission anisotropy

LUV:

large unilamellar vesicles

SUV:

small unilamellar vesicles

Tc :

lipid phase transition temperature

References

  1. 1.

    M. Edidin (1992)Trends Cell Biol. 2, 376–380.

  2. 2.

    K. Jacobson and W. Vaz (1992)Comm. Mol. Cell. Biophys. 8, 1–114.

  3. 3.

    D. S. Friend and D. W. Fawcett (1974)J. Cell Biol. 63, 641–664.

  4. 4.

    K. Florine-Casteel, J. J. LeMastes, and B. Herman (1991)FASEB J. 5, 2078–2084.

  5. 5.

    L. Finzi, C. Bustamante, G. Garab, and C. B. Juang (1989)Proc. Natl. Acad. Sci. USA 86, 8748–8752.

  6. 6.

    G. M. Lee, A. Ishihara. and K. A. Jacobson (1991)Proc. Natl. Acad. Sci. USA 88, 6274–6278.

  7. 7.

    R. Ghosh and W. W. Webb (1990)Biophys. J. 57, 286a.

  8. 8.

    S. C. Juo and M. P. Sheetz (1992)Trends Cell Biol. 2, 116–117.

  9. 9.

    A. Chakrabart, J. Matko, N. A. Rahman, B. G. Barisas, and M. Edidin (1992)Biochemistry 31, 7182–7189.

  10. 10.

    G. Daum (1985)Biochim. Biophys. Acta 822, 1–42.

  11. 11.

    J. H. Ipsen, J. Jorgensen, and O. G. Mouritsen (1990)Biophys. J. 58, 1099–1107.

  12. 12.

    O. G. Mouritsen (1983)Biochim. Biophys. Acta 731, 217–221.

  13. 13.

    M. L. Johnson, W. W. van Osdol, and R. L. Biltonen (1986) Volume-perturbation kinetic calorimeter, inMethods in Enzymology, Vol.130, Academic Press, pp. 534–551.

  14. 14.

    G. Cevc and D. Marsh (1987)Phospholipid Bilayers. Physical Principles and Models, Wiley-Interscience, New York.

  15. 15.

    O. G. Mouritsen (1984)Phase Transitions and Critical Phenomena, Springer-Verlag, New York.

  16. 16.

    F. Jähnig (1981)Biophys. J. 36, 329–345.

  17. 17.

    F. Jähnig (1981)Biophys. J. 36, 347–357.

  18. 18.

    S. Doniach (1978)J. Chem. Phys. 68, 4912–4916.

  19. 19.

    O. G. Mouritsen, A. Boothroyd, R. Harris, N. Jan, T. Lookman, L. MacDonald, D. A. Pink, and M. J. Zuckermann (1983)J. Chem. Phys. 79, 2027–2041.

  20. 20.

    M. J. Zuckerman, D. A. Pink, M. Costas, and B. C. Sanctuary (1982)J. Chem. Phys. 76, 4206–4216.

  21. 21.

    J. F. Nagle, and J. L. Scott, Jr. (1978)Biochim. Biophys. Acta 513, 236–243.

  22. 22.

    M. I. Kanehisa and T. Y. Tsong (1978)J. Am. Chem. Soc. 100, 424–432.

  23. 23.

    O. Albrecht, H. Gruler, and E. Sackman (1978)J. Physiol. (Paris)39, 301–313.

  24. 24.

    E. S. Wu, K. Jacobson, and D. Papahadjopoulos (1977)Biochemistry 16, 3936–3941.

  25. 25.

    R. E. Goldstein and S. Leibler (1989)Phys. Rev. A 40, 1025–1035.

  26. 26.

    D. Hoekstra (1982)Biochemistry 21, 1055–1061.

  27. 27.

    D. Hoekstra (1982)Biochemistry 21, 2833–2840.

  28. 28.

    E. Blatt and W. H. Sawyer (1985)Biochim. Biophys. Acta 822, 43–62.

  29. 29.

    D. Marsh (1981)Mol. Biol. Biochem. Biophys. 31, 51–142.

  30. 30.

    J. R. Wardlaw, W. H. Sawyer, and K. Ghiggino (1987)FEES Lett. 223, 20–24.

  31. 31.

    J. F. Holzwarth, V. Eck, and A. Genz (1985) in P. M. Bayley and R. E. Dale (Eds.),Spectroscopy and the Dynamics of Molecular Biological Systems, Academic Press, London, pp. 351–377.

  32. 32.

    E. Freire and R. Biltonen (1978)Biochim. Biophys. Acta 514, 54–68.

  33. 33.

    S. Imaizumi and C. W. Garland (1987)J. Phys. Soc. Jpn. 56, 3887–3892.

  34. 34.

    R. Biltonen (1990)J. Chem. Thermodynamics 22, 1–19.

  35. 35.

    S. Mikaku, A. Ikegami, and A. Sakanishi (1978)Biophys. Chem. 8, 295–304.

  36. 36.

    S. Mitaku, T. Jippo, and R. Kataoka (1983)Biophys. J. 42, 137–144.

  37. 37.

    B. Michels, N. Fazel, and R. Cerf (1989)Eur. Biophys. J. 17, 187–190.

  38. 38.

    M. H. Hawton and J. W. Doane (1987)Biophys. J. 52, 401–404.

  39. 39.

    A. Ruggiero and B. Hudson (1989)Biophys. J. 55, 1111–1124.

  40. 40.

    L. Davenport, J. R. Knutson, and L. Brand (1989)Subcell. Biochem. 14, 145–188.

  41. 41.

    L. Davenport, J. R. Knutson, and L. Brand (1988) in J. R. Lakowicz (Ed.),Time-Resolved Laser Spectroscopy in Biochemistry, Proceedings SPIE909, pp. 263–270.

  42. 42.

    P. G. deGennes (1974)The Physics of Liquid Crystals, Oxford University Press, London, Chapters 2–5.

  43. 43.

    U. Kaatze, R. Henze, and R. Pottel (1979)Chem. Phys. Lipids 25, 149–177.

  44. 44.

    M. P. Andrich and J. M. Vanderkooi (1976)Biochemistry 15, 1257–1261.

  45. 45.

    J. R. Lakowicz, F. G. Prendegast, and D. Hogan (1979)Biochemistry 18, 508–519.

  46. 46.

    S. Kawato, K. Kinosita, Jr., and A. Ikegami (1977)Biochemistry 16, 2319–2324.

  47. 47.

    S. Wang, J. M. Beechem, E. Gratton, and M. Glaser (1991)Biochemistry 30, 5565–5572.

  48. 48.

    W. Stillwell, S. R. Wassall, A. C. Damaual, and W. D. Ehringer (1993)Biochim. Biophys. Acta 1146, 136–144.

  49. 49.

    P. L. Chong (1988)Biochemistry 27, 399–404.

  50. 50.

    C. R. Mateo, M. P. Lillo, J. Gonzalez-Rodriguez, and A. U. Acuna (1991)Eur. Biophys. J. 20, 53–59.

  51. 51.

    B. R. Lentz, Y. Barenholz, and T. E. Thompson (1976)Biochemistry 15, 4521–4528.

  52. 52.

    B. R. Lentz, Y. Barenholz, and T. E. Thompson (1976)Biochemistry 15, 4529–4536.

  53. 53.

    R. D. Klausner, A. M. Kleinfeld, R. L. Hoover, and M. J. Karnovsky (1980)J. Biol. Chem. 255, 1286–1295.

  54. 54.

    L. Davenport, J. Knutson, and L. Brand (1986)Biochemistry 25, 1811–1816.

  55. 55.

    L. A. Sklar, B. S. Hudson, and R. D. Simoni (1977)Biochemistry 16, 819–828.

  56. 56.

    G. L. Atkins (1969) inMulticompartment Models in Biological Systems, Methuen, London.

  57. 57.

    L. Davenport, J. R. Knutson, and L. Brand (1986)Faraday Discuss. Chem. Soc. 81, 81–94.

  58. 58.

    G. Lipari and S. Szabo (1980)Biophys. J. 30, 489–506.

  59. 59.

    C. Zannoni (1979)Mol. Phys. 38, 1813–1837.

  60. 60.

    W. van der Meer, H. Pottel, W. Herreman, M. Ameloot, H. Hendrickx, and H. Schroder (1984)Biophys. J. 46, 515–523.

  61. 61.

    D. Toptygin, J. Svobodova, I. Konopasek, and L. Brand (1992)J. Chem. Phys. 96, 7919–7930.

  62. 62.

    P. K. Wolber and B. S. Hudson (1981)Biochemistry 20, 2800–2808.

  63. 63.

    R. E. Dale, L. A. Chen, and L. Brand (1977)J. Biol. Chem. 252, 7500–7510.

  64. 64.

    M. P. Heyn (1979)FEBS Lett. 108, 359–364.

  65. 65.

    F. Jahnig (1979)Proc. Natl. Acad. Sci. USA 76, 6361–6365.

  66. 66.

    R. Medelson, S. Sunder, and H. J. Berstein (1976)Biochim. Biophys. Acta 49, 563–569.

  67. 67.

    W. L. Hubbell and H. M. McConnell (1968)Proc. Natl. Acad. Sci. USA 61, 21–16.

  68. 68.

    P. Jost, A. S. Waggoner, and O. H. Griffith (1971) Spin-labelling and membrane structure, in L. I. Rothfield (Ed.),Structure and Function of Biological Membranes, Academic Press, New York, pp. 83–144.

  69. 69.

    C. H. A. Seiter and S. I. Chan (1973)J. Am. Chem. Soc. 95, 7541–7553.

  70. 70.

    A. Seelig and J. Seelig (1974)Biophys. Res. Commun. 57, 406–410.

  71. 71.

    G. W. Stockton, C. F. Polnaszek, A. P. Tulloch, F. Hasa, and I. C. P. Smith (1976)Biochemistry 15, 954–966.

  72. 72.

    N. O. Peterson and S. I. Chan (1977)Biochemistry 16, 2657–2667.

  73. 73.

    B. J. Gaffney and H. H. McConnell (1974)J. Mag. Res. 16, 1–28.

  74. 74.

    J. Lakowicz and J. R. Knutson (1980)Biochemistry 19, 905–911.

  75. 75.

    P. L. Chong, B. Wieb van der Meer, and T. E. Thompson (1985)Biochim. Biophys. Acta 813, 253–265.

  76. 76.

    H. J. Galla and E. Sackmann (1974)Biochim. Biophys. Acta 339, 103–115.

  77. 77.

    K. A. Zachariasse, W. Kuhnle, and A. Weller (1980)Chem. Phys. Lett. 73, 6–11.

  78. 78.

    D. Tang and P. L. Chong (1992)Biophys. J. 63, 903–910.

  79. 79.

    B. Wieb van der Meer, K. H. Cheng, and S.-Y. Chen (1990)Biophys. J. 58, 1517–1526.

  80. 80.

    M. Sassaroli, M. Vauhkonen, P. Somerharju, and S. Scarlatta (1993)Biophys. J. 64, 137–149.

  81. 81.

    V. H. Zimmerman and N. Joop (1961)Z. Elektrochem. 65, 138–142.

  82. 82.

    L. Davenport and P. Targowski (1994)Biochemistry, submitted.

  83. 83.

    L. Davenport, R. E. Dale, R. H. Bisby, and R. B. Cundall (1985)Biochemistry 24, 4097–4108.

  84. 84.

    O. G. Mouritsen and M. J. Zuckermann (1985)Eur. J. Biophys. 12, 75–86.

  85. 85.

    K. R. Thulborn (1981) in G. Beddard and M. A. West (Eds.),Fluorescent Probes, Academic Press, pp. 113–141.

  86. 86.

    L. Davenport, J. Wang, and J. R. Knutson (1989) in A. Butterfield (Ed.),Biological and Synthetic Membranes, Alan R. Liss, New York, pp. 97–106.

  87. 87.

    W. L. C. Vaz, E. C. C. Melo, and T. E. Thompson (1989)Biophys. J. 56, 869–876.

  88. 88.

    T. Parassasi, G. Ravagnan, R. M. Rusch, and E. Gratton (1993)Photochem. Photobiol. 57, 403–410.

  89. 89.

    S. W. Hui (1981)Biophys. J. 34, 383–395.

  90. 90.

    D. M. Haverstick and M. Glaser (1987)Proc. Natl. Acad. Sci. USA 84, 4475–4479.

  91. 91.

    S. M. Krisovitch and S. L. Regen (1991)J. Am. Chem. Soc. 113, 8175–8180.

  92. 92.

    L. Davenport and P. Targowski (1993)Biophys. J. 34, A75.

  93. 93.

    M. M. Sperotto and O. G. Mouritsen (1993)Eur. Biophys. J. 22, 323–328.

  94. 94.

    J. H. Ipsen, O. G. Mouritsen, and M. Bloom (1990)Biophys. J. 57, 405–412.

  95. 95.

    A. Genz, J. F. Holzwarth, and T. Y. Tsong (1986)Biophys. J. 50, 1043–1051.

  96. 96.

    Z.-Y. Peng, N. Tjandra, V. Simplacenu, and C. Ho (1989)Biophys. J. 56, 877–885.

  97. 97.

    W. W. van Osdol, Q. Ye, M. L. Johnson, and R. L. Biltonen (1992)Biophys. J. 63, 1011–1017.

  98. 98.

    M. Menashe, G. Romero, R. L. Biltonen, and D. Lichtenberg (1986)J. Biol. Chem. 261, 5328–5333.

  99. 99.

    F. Drepper, I. Carlberg, B. Anderson, and W. Haehnel (1993)Biochemistry 32, 11915–11922.

  100. 100.

    J. M. Montejo, K. R. Naqui, M. P. Lillo, J. Gonzalez-Rodriguez, and A. U. Acuna (1992)Biochemistry 31, 7580–7586.

  101. 101.

    B. Shen, J. Lobo, P. Targowski, and L. Davenport (1994)Biophys. J. 66, A58.

  102. 102.

    A. A. Paladini and G. Weber (1981)Rev. Sci. Instrum. 52, 419–429.

Download references

Author information

Correspondence to Lesley Davenport.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Davenport, L., Targowski, P. Long-lived fluorescence probes for studying lipid dynamics: A review. J Fluoresc 5, 9–18 (1995). https://doi.org/10.1007/BF00718778

Download citation

Key words

  • lipid dynamics
  • fluorescence probes
  • coronene
  • bilayers