Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mechanics of stress corrosion fracture

  • 43 Accesses

Conclusion

It should be emphasized that the influence of the environment is sometimes very substantial even under normal atmospheric conditions, due to the presence of moisture. Sometimes there is a combination of hydrogen embrittlement and electrochemical corrosion mechanisms, leading to characteristic linearconstant diagrams (hydrogen embrittlement prevails in the linear sector, and electrochemical corrosion in the sector where KI = const).

A theoretical description of crack growth in metals exposed to various active environmental constituents is given in [5]. Local hydrogen absorption and local electrochemical corrosion at the crack tip are the most important (practical) mechanisms of subcritical crack growth [5]; [39–44] are also devoted to theoretical study of the latter mechanisms.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    Collection “Corrosion” [in Russian], Vols. 1–4, Mir (1972).

  2. 2.

    H. L. Logan, Stress Corrosion of Metals, Wiley (1966).

  3. 3.

    G. V. Karpenko and I. I. Vasilenko, Stress Corrosion Cracking in Steels [in Russian], Tekhnika (1971).

  4. 4.

    V. V. Panasyuk, Ultimate Equilibrium in Brittle Bodies with Cracks [in Russian], Naukova Dumka (1968).

  5. 5.

    G. P. Cherepanov, Mechanics of Brittle Fracture [in Russian], Nauka (1973).

  6. 6.

    Fracture (an Advanced Treatise), Vols. 1–7, ed. H. Liebowitz, Academic Press (1968–1971).

  7. 7.

    H. H. Johnson and P. S. Paris, J. Eng. Fract. Mech.,1, No. 3 (1968).

  8. 8.

    H. H. Johnson, Fracture, Vol. 3, Academic Press (1971).

  9. 9.

    B. F. Brown, Metallurg. Revs.,13, 171 (1968).

  10. 10.

    R. P. Wei, J. Eng. Fract. Mech.,1, 633 (1970).

  11. 11.

    V. Z. Parton and G. P. Cherepanov, in: Mechanics in the USSR over Fifty Years [in Russian], Vol. 3, Nauka (1972).

  12. 12.

    H. H. Johnson and A. M. Willner, Applied Mater. Res.,4, 34 (1965).

  13. 13.

    R. P. Wei et al., Proc. Symposium on Fatigue Crack Propagation, ASTM, Philadelphia (1964), p. 460.

  14. 14.

    D. E. Piper et al., ASM Trans. Q.,57, 658 (1966).

  15. 15.

    T. C. Chisholm and P. F. Langstone, Metallurgia,83, 97 (1971).

  16. 16.

    J. A. Feeney and M. J. Blackburn, Metal. Trans.,1, 3308 (1970).

  17. 17.

    G. J. Petak, J. Eng. Fract. Mech.,4, 347 (1972).

  18. 18.

    H. Nichols and W. Rostoker, Sensitivity of Mechanical Properties to Environmental Action [Russian translation], Mir (1969).

  19. 19.

    V. I. Loboiko, I. I. Vasilenko, S. Ya. Yarema, et al., Fiz.-Khim. Mekhan. Mat., No. 1 (1972).

  20. 20.

    G. L. Hanna et al., ASM Trans. Q.,57, 658 (1964).

  21. 21.

    R. P. Wei, Intern. J. Fract. Mech.,4, 159 (1968).

  22. 22.

    J. M. Barsom, E. J. Imhof, and S. T. Rolfe, Engng. Fract. Mech.,4, 301 (1971).

  23. 23.

    C. D. Beachen, Met. Trans.,3, 437 (1972).

  24. 24.

    B. F. Brown, J. Electrochem. Soc.,116, 218 (1969).

  25. 25.

    G. G. Hancock and H. H. Johnson, Trans. Metal. Soc., AIME,236, 513 (1966).

  26. 26.

    H. J. Magnani, Corrosion,26, 406 (1970).

  27. 27.

    C. S. Carter, Metal. Trans.,2, 1621 (1971).

  28. 28.

    C. S. Carter, J. Eng. Fract. Mech.,3, 1 (1971).

  29. 29.

    A. J. Stavros and H. W. Paxton, Metal. Trans.,1, 3049 (1970).

  30. 30.

    H. P. Leckie, Proc. of Conf. on Fundamental Aspects of Stress Corrosion Cracking, Ohio State Univ., Dep. Met. Eng., Houston, Texas (1969), p. 411.

  31. 31.

    E. N. Pugh, J. A. S. Green, and P. W. Slattery, Fracture (1969); Proc. 2nd Intern. Conf. Fracture, Brighton, April 1969, London.

  32. 32.

    M. V. Hyatt, Corrosion,27, 49 (1971).

  33. 33.

    A. M. Sullivan, Engng. Fract. Mech.,4, 65 (1972).

  34. 34.

    A. J. Sedriks, J. A. S. Green, and D. L. Novak, Metal. Trans.,1, 1815 (1970).

  35. 35.

    H. P. Chu and G. A. Wacker, J. Basic Eng., Ser. D,91, 1 (1969).

  36. 36.

    J. A. S. Green and A. J. Sedriks, Metal. Trans.,2, 1807 (1971).

  37. 37.

    B. F. Brown, J. Mater.,5, 786 (1970).

  38. 38.

    R. J. Bucci and P. C. Paris, Corrosion,27, 525 (1971).

  39. 39.

    G. P. Cherepanov, L. V. Ershov, and G. G. Kuz'min, Corrosion,29, 100 (1973).

  40. 40.

    G. P. Cherepanov, Summaries of Papers at the Thirteenth International Congress on Theoretical and Applied Mechanics [in Russian], Nauka (1972).

  41. 41.

    G. P. Cherepanov, Proc. 3rd Intern. Congr. Fracture, Munich (1973).

  42. 42.

    G. P. Cherepanov, Summaries of Papers at Symposium on Fracture and Fatigue, Washington (1972).

  43. 43.

    G. P. Cherepanov, Eng. Fract. Mech.,5, (1973).

  44. 44.

    G. P. Cherepanov, Corrosion,29 (1973).

Download references

Author information

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 9, No. 6, pp. 62–66, November–December, 1973.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cherepanov, G.P. Mechanics of stress corrosion fracture. Mater Sci 9, 677–680 (1975). https://doi.org/10.1007/BF00717766

Download citation

Keywords

  • Hydrogen
  • Atmospheric Condition
  • Hydrogen Absorption
  • Stress Corrosion
  • Theoretical Description