Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Superposition in quantum and relativity physics—An interaction interpretation of special relativity theory: Part III


With the interaction interpretation, the Lorentz transformation of a system arises with selection from a superposition of its states in an observation-interaction. Integration of momentum states of a mass over all possible velocities gives the rest-mass energy. Static electrical and magnetic fields are not found to form such a superposition and are to be taken as irreducible elements. The external superposition consists of those states that are reached only by change of state of motion, whereas the internal superposition contains all the states available to an observer in a single inertial coordinate system. The conjecture is advanced that states of superposition may only be those related by space-time transformations (Lorentz transformations plus space inversion and charge conjugation). The continuum of external and internal superpositions is examined for various masses, and an argument for the unity of the super-positions is presented.

This is a preview of subscription content, log in to check access.


  1. 1.

    R. Schlegel,Found. Phys. 3(2), 169 (1973).

  2. 2.

    R. Schlegel,Found. Phys. 3(3), 277 (1973).

  3. 3.

    R. Schlegel,Completeness in Science (Appleton-Century-Crofts, New York, 1967).

  4. 4.

    C. Møller,The Theory of Relativity (Oxford Univ. Press, 1952).

  5. 5.

    M. Abraham and R. Becker,The Classical Theory of Electricity and Magnetism, trans. by J. Dougall (Blackie, London, 1937), Chapter XII.

  6. 6.

    J. R. Reitz and F. J. Milford,Foundations of Electromagnetic Theory (Addison-Wesley, Reading, Massachusetts, 1967), Section 17-2.

  7. 7.

    A. Einstein,Ann. Physik 17, 891 (1905), Section 6.

  8. 8.

    W. Heitler,The Quantum Theory of Radiation, 3rd ed. (Oxford Univ. Press, 1954).

  9. 9.

    N. Bohr,Atomic Theory and the Description of Nature (Cambridge Univ. Press, 1934), p. 10.

  10. 10.

    G. Reece,Int. J. Theor. Phys. 7, 81 (1973); E. P. Wigner, inFoundations of Quantum Mechanics, B. D'Espagnat, ed. (Academic Press, New York, 1971), p. 1.

  11. 11.

    P. A. M. Dirac,The Principles of Quantum Mechanics, 3rd ed. (Oxford Univ. Press, 1947), p. 201.

  12. 12.

    J. L. Powell and B. Crasemann,Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 1961).

  13. 13.

    J. J. Sakurai,Invariance Principles and Elementary Particles (Princeton Univ. Press, 1964).

  14. 14.

    E. Schrödinger,Naturwiss. 23, 807, 823, 844 (1935).

  15. 15.

    N. Rosen,Am. J. Phys. 32, 597 (1964).

  16. 16.

    E. P. Wigner, inSymmetries and Reflections: Scientific Essays of Eugene P. Wigner, W. J. Moore and M. Scriven, eds. (Indiana Univ. Press, Bloomington, 1967), pp. 171–184.

  17. 17.

    R. Schlegel,Am. J. Phys. 22, 77 (1954).

  18. 18.

    W. Heisenberg,The Physical Principles of Quantum Theory, trans. by C. Eckart and F. C. Hoyt (Dover, New York), Section 11, Appendix.

  19. 19.

    R. Schlegel,Synthèse 21, 65 (1970).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schlegel, R. Superposition in quantum and relativity physics—An interaction interpretation of special relativity theory: Part III. Found Phys 5, 197–215 (1975).

Download citation


  • Magnetic Field
  • Coordinate System
  • Special Relativity
  • Lorentz Transformation
  • Charge Conjugation