Advertisement

Chemistry and Technology of Fuels and Oils

, Volume 11, Issue 1, pp 14–19 | Cite as

Mathematical modeling of fixed-bed oxidative regeneration of zeolite

  • V. I. Nazarok
  • O. I. Gaponenko
  • A. S. Shmelev
  • K. I. Patrilyak
  • P. N. Galich
Petroleum and Gas Processing
  • 20 Downloads

Conclusions

  1. 1.

    The formation of a steady-state combustion front has been demonstrated in the fixed-bed oxidative regeneration of zeolite.

     
  2. 2.

    Process conditions have been investigated in relation to their effects on the basic characteristics of the process, i.e., the average coke combustion rate and the maximum temperature rise in the zeolite. This work has demonstrated the important role of these characteristics in selecting optimal process conditions for the fixed-bed oxidative regeneration of zeolite.

     

Keywords

Combustion Mathematical Modeling Zeolite Process Condition Optimal Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    L. T. Thomas, Proceedings of Sixth World Petroleum Congress [Russian translation], Ser. Neftepererabotka, Nos. 2–4, TsNIITÉNeftegaz, Moscow (1965), p. 198.Google Scholar
  2. 2.
    U. S. Patent 3,069,362 (1962).Google Scholar
  3. 3.
    V. S. Gutyrya, P. N. Galich, O. D. Konoval'chikov, et al., Dokl. Akad. Nauk SSSR,168, No. 2, 379 (1966).Google Scholar
  4. 4.
    O. I. Gaponenko, K. I. Patrilyak, V. I. Nazarok, et al., Dokl. Akad. Nauk UkrSSR, Ser. B, No. 10, 931 (1970).Google Scholar
  5. 5.
    O. I. Gaponenko, K. I. Patrilyak, V. I. Nazarok, et al., Dokl. Akad. Nauk UkrSSR, Ser. B, No. 11, 1002 (1970).Google Scholar
  6. 6.
    Yu. M. Zhorov, G. M. Panchenkov, M. V. Kozlov, et al., Khim. Tekhnol. Topl. Masel, No. 2, 41 (1967).Google Scholar
  7. 7.
    Yu. M. Zhorov, G. M. Panchenkov, Yu. I. Laz'yan, et al., Khim. Tekhnol. Topl. Masel, No. 8, 41 (1967).Google Scholar
  8. 8.
    Yu. I. Laz'yan, G. M. Panchenkov, S. V. Adel'son, and A. Ya. Zaitova, Khim. Tekhnol. Topl. Masel, No. 12, 4 (1968).Google Scholar
  9. 9.
    Yu. I. Laz'yan, G. M. Panchenkov, M. V. Kozlov, et al., Khim. Tekhnol. Topl. Masel, No. 6, 37 (1969).Google Scholar
  10. 10.
    G. M. Panchenkov, Yu. I. Laz'yan, M. V. Kozlov, et al., Khim. Tekhnol. Topl. Masel, No. 7, 4 (1969).Google Scholar
  11. 11.
    Yu. M. Zhorov, G. M. Panchenkov, M. E. Levinter, et al., Zh. Fiz. Khim.,40, No. 3, 537 (1966).Google Scholar
  12. 12.
    Concise Handbook of Chemistry [in Russian], Goskhimizdat, Moscow (1963), p. 285.Google Scholar
  13. 13.
    Handbook of Chemistry [in Russian], Vol. 1, Goskhimizdat, Moscow-Leningrad (1963), p. 764.Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • V. I. Nazarok
    • 1
  • O. I. Gaponenko
    • 1
  • A. S. Shmelev
    • 1
  • K. I. Patrilyak
    • 1
  • P. N. Galich
    • 1
  1. 1.Institute of Chemistry of High-Molecular-Weight CompoundsAcademy of Sciences of the Ukrainian SSRUkraine

Personalised recommendations