Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

An effective hypothesis proposed for evaluating the effect of corrosive media on the cyclic crack resistance of metals and alloys

  • 21 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    V. I. Nikitin, Physicochemical Phenomena during the Reaction of Liquid Metals with Solid Metals [in Russian], Atomizdat, Moscow (1967).

  2. 2.

    R. P. Wei, ”Some aspects of environment-enhanced fatigue crack growth,“ Eng. Fract. Mech.,1, No. 4, 633–651 (1970).

  3. 3.

    E. J. Imhof and J. M. Barsom, ”Fatigue and corrosion-fatigue crack growth of 4340 steel at various yield strengths,“ in: Progress ir Flaw Growth and Fracture Toughness Testing, ASTM STP 536 (1973), pp. 182–205.

  4. 4.

    C. J. McMahon, Jr., ”Environment assisted fracture in engineering alloys. Part II, Cyclic loading and future work,“ Trans. ASME,H95 No. 3, 142–149 (1973).

  5. 5.

    O. N. Romaniv, Ya. N. Gladkii, and A. N. Kuroshchenov, ”Action of water on fatigue crack kinetics in thermally hardened spring steel,“ Fiz.-Khim. Mekh. Mater., No. 2, 54–59 (1976).

  6. 6.

    R. P. Wei and J. D. Landes, ”Correlation between sustained load and fatigue crack growth in high-strength steels,“ Mat. Res. Stand.,9, No. 7, 25–46 (1969).

  7. 7.

    P. C. Paris, R. J. Bucci, and C. D. Little, ”Fatigue crack propagation of D6ac steel in air and distilled water,“ in: Stress Analysis and Growth of Cracks, ASTM STP 513, Part 1 (1972), pp. 196–217.

  8. 8.

    G. A. Miller, S. J. Hudak, and R. P. Wei, ”The influence of loading variables on environment-enhanced fatigue crack growth in high-strength steel,“ J. Test. Eval.,1, No. 6, 524–531 (1973).

  9. 9.

    O. N. Romaniv, Ya. N. Gladkii, and N. A. Deev, ”Some features of the effect of residual austenite on the fatigue and crack resistance of lightly tempered steels,“ Fiz.-Khim. Mekh. Mater., No. 4, 63–70 (1975).

  10. 10.

    G. N. Nikiforchin, S. I. Ripetskii, I. A. Berezyuk, and N. A. Lenets, ”Equipment for studying the crack resistance of materials during long-term operation in working media,“ Fiz.-Khim. Mekh. Mater., No. 4, 115–116 (1975).

  11. 11.

    O. N. Romaniv, G. N. Nikiforchin, and N. A. Deev, ”Kinetic effects in the mechanics of delayed fracture of high-strength alloys,“ Fiz.-Khim. Mekh. Mater., No. 4, 9–24 (1976).

  12. 12.

    T. W. Crooker and E. A. Lande, ”The influence of salt water on fatigue crack growth in high-strength structural steels,“ in: Effects of Environment and Complex Load History on Fatigue Life, ASTM STP 462 (1970), pp. 258–271.

  13. 13.

    V. A. Dudin and O. N. Romaniv, ”Effect of thermomechanical treatment on the tendency to delayed fracture of chromium-silicon high carbon steels,“ Fiz.-Khim. Mekh. Mater., No. 5, 82–87 (1969).

  14. 14.

    V. I. Vylezhnev, I. I. Sarrak, and R. I. Éntin, Izv. Akad. Nauk SSSR, Met., No. 6, 137–142 (1971).

  15. 15.

    O. N. Romaniv, G. N. Nikiforchin, and N. L. Kuklyak, ”Adsorption reduction of steel crack resistance during static loading,“ Fiz.-Khim. Mekh. Mater., No. 1, 25–31 (1976).

  16. 16.

    W. A. Van der Sluys, ”Mechanisms of environment induced subcritical flaw growth in AISI 4340 steel,“ Eng. Fract. Mech.,1, No. 3, 447–462 (1968).

  17. 17.

    J. D. Landes and R. P. Wei, ”The kinetics of subcritical crack growth under sustained loading,“ Int. J. Fracture,9, No. 3, 277–293 (1973).

  18. 18.

    R. O. Ritchie, ”Influence of impurity segregation on temper embrittlement and on slow fatigue crack growth and threshold behavior in 300-M high-strength steel,“ Met. Trans., 8A, No. 6, 1131–1140 (1977).

  19. 19.

    C. F. Barth, E. A. Steigerwald, and A. R. Troiano, ”Hydrogen permeability and delayed failure of polarized martensitic steels,“ Corrosion,25, No. 9, 353–359 (1969).

  20. 20.

    C. F. Barth and A. R. Troiano, ”Cathodic protection and hydrogen In stress corrosion cracking,“ Corrosion,28, No. 7, 259–263 (1972).

  21. 21.

    E. N. Pugh, ”On the mechanism(s) of stress corrosion cracking,“ in: Metallurgical Society Conferences, Vol. 35, Baltimore, Maryland (1965), pp. 351–403.

Download references

Author information

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 14, No. 5, pp. 19–26, September–October, 1978.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Romaniv, O.N., Gladkii, Y.N. & Nikiforchin, G.N. An effective hypothesis proposed for evaluating the effect of corrosive media on the cyclic crack resistance of metals and alloys. Mater Sci 14, 469–475 (1979). https://doi.org/10.1007/BF00716598

Download citation

Keywords

  • Crack Resistance
  • Corrosive Medium
  • Cyclic Crack Resistance
  • Effective Hypothesis