Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Modification of air flow over an escarpment — Results from the Hjardemål experiment

  • 192 Accesses

  • 30 Citations


Mean flow, turbulence, and surface pressure measurements over an escarpment are presented. The speed-up in the mean wind field shows the known dependence on stratification. Cross-sections of the standard deviation of horizontal and vertical wind components and of the friction velocity are derived from the data and compare favorably with the numerical model of Zeman and Jensen (1987). The modification of turbulent power spectra at intermediate frequencies can be explained by rapid distortion theory. At very low frequencies, there is a quasi-stationary response to the disturbance. Except for speed-up and standard deviations of the wind components, which are also shown for downslope wind, all results in this paper refer to upslope winds.

An analysis of the vertical momentum flux reveals that upstream of the escarpment, most of the flux is transported in sweeps of fast, sinking motion to the ground. Downstream of the escarpment, ejections of slow, rising motion dominate the turbulent transport.

This is a preview of subscription content, log in to check access.


  1. Adrian, G. and Fiedler, F.: 1991 ‘Simulation of Unstationary Wind and Temperature Fields over Complex Terrain and Comparison with Observations’,Beitr. Phys. Atmosph. 64, 27–48.

  2. Astley, R. J.: 1977, ‘A Finite Element Frozen Vorticity Solution for Two-Dimensional Wind Flow over Hills’,6th Australasian Conf. on Hydraulics and Fluid Mechanics, Adelaide, Australia, 443–446.

  3. Batchelor, G. K. and Proudman, I.: 1954, ‘The Effect of Rapid Distortion of a Fluid in Turbulent Motion’,Q. J. Mech. Appl. Math. 7, 83–103.

  4. Bowen, A. J.: 1979, ‘Full Scale Measurements of the Atmospheric Turbulence over Two Escarpments’, in J. E. Cermak (ed.),Wind Engineering: Proc. 5th Internat. Conf., Fort Collins, Pergamon, 161–172.

  5. Bowen, A. J. and Lindley, D.: 1974 ‘Measurements of the Mean Wind Flow Over Various Escarpment Shapes’,5th Australasian Conf. on Hydraulics and Fluid Mechanics, Canterbury, New Zealand, 211–219.

  6. Bowen, A. J. and Lindley, D.: 1977, ‘A Wind-Tunnel Investigation of the Wind Speed and Turbulence Characteristics Close to the Ground over Various Escarpment Shapes’,Boundary-Layer Meteorol. 12, 259–271.

  7. Britter, R. E., Hunt, J. C. R. and Mumford, J. C.: 1979, ‘The Distortion of Turbulence by a Circular Cylinder’,J. Fluid Mech. 92, 269–301.

  8. Chen, F.: 1990, ‘Turbulent Characteristics over a Rough Natural Surface Part II: Responses of Profiles to Turbulence’,Boundary-Layer Meteorol. 52, 301–311.

  9. Courtney, M., Højstrup, J., and Jensen, N. O.: 1990, A Field Study of Flow over an Escarpment’,9th Symposium on Turbulence and Diffusion, AMS, Roskilde (DK), April 30–May 3, 1990, 363–366.

  10. Emeis, S., Courtney, M. S., Højstrup, J., and Jensen, N. O.: 1993,Hjardemål Experiment Data Report, Risø National Laboratory, Risø-M-2289(EN), and Sonderforschungsbereich 210, Univ. Karlsruhe, Germany, Nr. SFB210/E/77, 126 pp. (available from Risø National Laboratory, Library, P.O. Box 49, DK-4000 Roskilde)

  11. Fiedler, F.: 1975, ‘Turbulenter Spannungs-und Deformationstensor in der Prandtl-Schicht’,Beitr. Phys. Atmosph. 48, 290–300.

  12. Frank, H., Heldt, K., Emeis, S., and Fiedler, F.: 1993, ‘Flow over an Embankment: Speed-up and Pressure Perturbation’,Boundary-Layer Meteorol. 63, 163–182.

  13. Horst, T. W.: 1973, ‘Corrections for Response Errors in a Three-Component Propeller Anemometer’,J. Appl. Meteorol. 12, 716–725.

  14. Jackson, P. S. and Hunt, J. C. R.: 1975, ‘Turbulent Wind Flow over a Low Hill’,Q. J. R. Meteorol. Soc. 101, 929–955.

  15. Jensen, N. O.: 1983, ‘Escarpment Induced Flow Perturbations, a Comparison of Measurements and Theory’,J. Wind Eng. Ind. Aerodyn. 15, 243–251.

  16. Jensen, N. O., Troen, I., and Højholt, P.: 1990, ‘Model Comparisons with Flow over an Escarpment’,9th Symposium on Turbulence and Diffusion, AMS, Roskilde (DK), April 30–May 3, 1990, 413–416.

  17. Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.: 1972, ‘Spectral Characteristics of Surfacelayer Turbulence’,Q. J. R. Meteorol. Soc. 98, 563–589.

  18. Kreyszig, E.: 1988,Statistische Methoden und ihre Anwendungen, 7. ed., Vandenhoek & Ruprecht, Göttingen, 462 pp.

  19. Mason, P. J.: 1986, ‘Flow over the Summit of an Isolated Hill’,Boundary-Layer Meteorol. 37, 385–405.

  20. Mason, P. J. and King, J. C.: 1985, ‘Measurements and Predictions of Flow and Turbulence over an Isolated Hill of Moderate Slope’,Q. J. R. Meteorol. Soc. 111, 617–640.

  21. McBean, G. A.: 1974, ‘The Turbulent Transfer Mechanisms: A Time Domain Analysis’,Q. J. R. Meteorol. Soc. 100, 53–66.

  22. Olesen, H. R., Larsen, S. E., and Højstrup, J.: 1984, ‘Modelling Velocity Spectra in the Lower Part of the Planetary Boundary Layer’,Boundary-Layer Meteorol. 29, 285–312.

  23. Panofsky, H. A., Larko, D., Lipschutz, R., Stone, G., Bradley, E. F., Bowen, A. J., and Højstrup, J.: 1982, ‘Spectra of Velocity Components over Complex Terrain’,Q. J. R. Meteorol. Soc. 108, 215–230.

  24. Panofsky, H. A. and Dutton, J. A.: 1984,Atmospheric Turbulence, Models and Methods for Engineering Applications, Wiley Interscience, John Wiley & Sons, New York, 397 pp.

  25. Taylor, P. A., Mason, P. J., and Bradley, E. F.: 1987, ‘Boundary Layer Flow over Hills’,Boundary-Layer Meteorol. 39, 107–132.

  26. Townsend, A. A.: 1976,The Structure of Turbulent Shear Flow, 2nd ed., Cambridge Univ. Press, 429 pp.

  27. Zenman, O. and Jensen, N. O.: 1987, ‘Modification of Turbulence Characteristics in Flow over Hills’,Q. J. R. Meteorol. Soc. 113, 55–80.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Emeis, S., Frank, H.P. & Fiedler, F. Modification of air flow over an escarpment — Results from the Hjardemål experiment. Boundary-Layer Meteorol 74, 131–161 (1995). https://doi.org/10.1007/BF00715714

Download citation


  • Stratification
  • Power Spectrum
  • Surface Pressure
  • Wind Field
  • Friction Velocity