Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Heat and water vapour fluxes and scalar roughness lengths over an Antarctic ice shelf


We present eddy-correlation measurements of heat and water vapour fluxes made during the Antarctic winter. The surface layer was stably stratified throughout the period of observation and sensible heat fluxes were always directed downwards. However, both upward and downward water vapour fluxes were observed. Their magnitude was generally small and the latent heat flux was not a significant fraction of the surface energy budget. The variation of heat and water vapour fluxes with stability is well described by Monin-Obukhov similarity theory but the scalar roughness lengths for heat and water vapour appear to be much larger than the momentum roughness length. Possible explanations of this effect are discussed.

This is a preview of subscription content, log in to check access.


  1. Andreas, E. L.: 1986, ‘A New Method of Measuring the Snow-Surface Temperature’,Cold Reg. Sci. Tech. 12, 139–156.

  2. Andreas, E. L.: 1987, ‘A Theory for the Scalar Roughness and the Scalar Transfer Coefficient over Snow and Sea Ice’,Boundary-Layer Meteorol. 38, 159–184.

  3. Andreas, E. L.: 1989, ‘Comments on “A Physical Bound on the Bowen Ratio”’J. Appl. Meteorol. 28, 1252–1254.

  4. Brutsaert, W.: 1975, ‘The Roughness Length for Water Vapor, Sensible Heat and Other Scalars’,J. Atmos. Sci. 32, 2028–2031.

  5. Buck, A. L.: 1976, ‘The Variable-Path Lyman-alpha Hygrometer and its Operating Characteristics’,Bull. Amer. Meteorol. 57, 1113–1118.

  6. Budd, W. F.: 1966, ‘The Drifting of Nonuniform Snow Particles’, in M. J. Rubin (ed.),Antarctic Research Series, vol. 9.Studies in Antarctic Meteorology, pp. 59–70, American Geophysical Union, Washington.

  7. Budd, W. F. and Smith, I. N.: 1985, ‘The State of Balance of the Antarctic Ice Sheet, an Updated Assessment 1984’, inGlaciers, Ice Sheets and Sea Level: Effects of a CO 2-induced Climatic Change, pp. 172–177, National Academy Press, Washington.

  8. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’,J. Atmos. Sci. 28, 181–189.

  9. de la Casinière, A. C.: 1974, ‘Heat Exchange over a Melting Snow Surface’,J. Glaciol. 13, 55–72.

  10. Duynkerke, P. G.: 1992, ‘The Roughness Length for Heat and other Vegetation Parameters for a Surface of Short Grass’,J. Appl. Meteorol. 31, 579–586.

  11. Dyer, A. J.: 1967, ‘The Turbulent Transport of Heat and Water Vapour in the Unstable Atmosphere’,Q. J. R. Meteorol. Soc. 93, 501–508.

  12. Garratt, J. R.: 1992,The Atmospheric Boundary Layer, Cambridge University Press, Cambridge.

  13. Garratt, J. R. and Brost, R. A.: 1981, ‘Radiative Cooling Effects within and above the Nocturnal Boundary Layer’,J. Atmos. Sci. 38, 2730–2746.

  14. Grant, A. L. M. and Watkins, R. D.: 1589, ‘Errors in Turbulence Measurements with a Sonic Anemometer’,Boundary-Layer Meteorol. 46, 181–194.

  15. Guest, P. S. and Davidson, K. L.: 1992, ‘A Study of the Factors Controlling the Value of the Surface Temperature of Sea Ice’, inPreprints, Third Conference on Polar Meteorology and Oceanography, pp. 54–57, Amer. Meteorol. Soc., Boston.

  16. Halherstam, I. and Schieldge, J. P.: 1981, ‘Anomalous Behaviour of the Atmospheric Surface Layer over a Melting Snowpack’,J. Appl. Meteorol. 20, 255–265.

  17. Harding, R. J., Entrasser, N., Escher-Vetter, H., Jenkins, A., Kaser, G., Kuhn, M., Morris, E. M., and Tanzer, G.: 1989, ‘Energy and Mass Balance Studies in the Firn Area of the Hintereisferner’, in J. Oerlemans (ed.),Glacier Fluctuations and Climate Change, pp. 325–341, Kluwer, Dordrecht.

  18. Hicks, B. B. and Martin, H. C.: 1972, ‘Atmospheric Turbulent Fluxes over Snow’,Boundary-Layer Meteorol. 2, 496–502.

  19. Hignett, P.: 1992, ‘Corrections to Temperature Measurements with a Sonic Anemometer’,Boundary-Layer Meteorol. 61, 175–187.

  20. Högström, U.: 1988, ‘Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer: A Re-evaluation’,Boundary-Layer Meteorol. 42, 55–78.

  21. Joffre, S. M.: 1982, ‘Momentum and Heat Transfers in the Surface Layer over a Frozen Sea’,Boundary-Layer Meteorol. 24, 211–229.

  22. Jonsson, S.: 1992, ‘Local Climate and Mass Balance of a Blue-Ice Area in Western Dronning Maud Land, Antarctica’,Zeit. Gletsch. Glaz. 26, 11–29.

  23. Kaimal, J. C.: 1969, ‘Measurements of Momentum and Heat Flux Variations in the Surface Boundary Layer’,Rad. Sci. 4, 1147–1153.

  24. Kaimal, J. C. and Gaynor, J. E.: 1991, ‘Another Look at Sonic Thermometry’,Boundary-Layer Meteorol. 56, 401–410.

  25. King, J. C.: 1990, ‘Some Measurements of Turbulence over an Antarctic Ice Shelf’,Q. J. R. Meteorol. Soc. 116, 379–400.

  26. King, J. C. and Anderson, P. S.: 1988, ‘Installation and Performance of the STABLE Instrumentation at Halley’,BAS Bulletin 79, 65–77.

  27. King, J. C., Mobbs, S. D., Rees, J. M., Anderson, P. S., and Culf, A. D.: 1989, ‘The Stable Antarctic Boundary Layer Experiment at Halley Station’,Weather 44, 398–405.

  28. Kohsiek, W., de Bruin, H. A. R., The, H., and van den Hurk, B.: 1993, ‘Estimations of the Sensible Heat Flux of a Semi-Arid Area using Surface Radiative Temperature Measurements’,Boundary-Layer Meteorol. 63, 213–230.

  29. Moore, C. J.: 1986, ‘Frequency Response Corrections for Eddy Correlation Systems’,Boundary-Layer Meteorol. 37, 17–37.

  30. Morris, E. M.: 1989, ‘Turbulent Transfer over Snow and Ice’,J. Hydrol. 105, 205–223.

  31. Munro, D. S.: 1989, ‘Surface Roughness and Bulk Heat Transfer on a Glacier: Comparison with Eddy Correlation’,J. Glaciol. 35, 343–348.

  32. Oke, T. R.: 1970, ‘The Temperature Profile near the Ground on Calm Clear Nights’,Q. J. R. Meteorol. Soc. 96, 14–23.

  33. Philip, J. R.: 1987, ‘A Physical Bound to the Bowen Ratio’,J. Clim. App. Meteorol. 26, 1043–1045.

  34. Pomeroy, J. W.: 1988, ‘Wind Transport of Snow’, Ph.D. thesis, University of Saskatchewan.

  35. Radok, U.: 1977, ‘Snow Drift’,J. Glaciol.,19, 123–139.

  36. Thorpe, M. R., Banke, E. G., and Smith, S. D.: 1973, ‘Eddy Correlation Measurements of Evaporation and Sensible Heat Flux over Arctic Sea Ice’,J. Geophys. Res. 78, 3573–3584.

  37. Warhaft, Z.: 1976, ‘Heat and Moisture Flux in the Stratified Boundary Layer’,Q. J. R. Meteorol. Soc. 102, 703–707.

  38. Webb, E. K.: 1970, ‘Profile Relationships: The Log-Linear Range, and Extension to Strong Stability’,Q. J. R. Meteorol. Soc. 96, 67–90.

  39. Wood, N. and Mason, P. J.: 1991, ‘The Influence of Static Stability on the Effective Roughness Lengths for Momentum and Heat Transfer’,Q. J. R. Meteorol. Soc. 117, 1025–1056.

  40. Wyngaard, J. C. and Zhang, S.-F.: 1985, ‘Transducer Shadow Effects on Turbulence Spectra Measured by Sonic Anemometers’,J. Atmos. Ocean. Tech. 2, 548–558.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

King, J.C., Anderson, P.S. Heat and water vapour fluxes and scalar roughness lengths over an Antarctic ice shelf. Boundary-Layer Meteorol 69, 101–121 (1994). https://doi.org/10.1007/BF00713297

Download citation


  • Heat Flux
  • Water Vapour
  • Latent Heat
  • Significant Fraction
  • Latent Heat Flux