Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Chemical energy usage and myosin light chain phosphorylation in mammalian skeletal muscle

  • 40 Accesses

  • 37 Citations


The purpose of this study was to ascertain whether phosphorylation of the regulatory light chain of myosin plays a role in modulating the rate of chemical energy usage in mammalian skeletal muscle. There was no change in the average rate of chemical energy usage with duration of isometric stimulation in the rat extensor digitorum longus (EDL), even though the degree of light chain phosphorylation increased from 5% at rest to above 60% after 7 s of stimulation. When the initial degree of phosphorylation was increased to 73% by prestimulation of the muscle, there was still no change in the chemical energy usage under isometric conditions. In contrast, under the conditions used, the mouse EDL showed changes in the average rate of energy usage that depended upon both tetanus duration and stimulation history. However, there was no consistent relationship between phosphorylation of the light chain and average rate of chemical energy usage. These results suggest that while there are factors which can change crossbridge cycling rate in mammalian skeletal muscle, phosphorylation of the regulatory light chain of myosin is neither necessary nor sufficient to cause such changes.

This is a preview of subscription content, log in to check access.


  1. AUBERT, X. (1968) InSymposium of Muscle Symposia Biologica Hungarica (edited by ERNST, E. and STRAUB, F. B.), pp. 187–189. Budapest: Akademiai Kaido.

  2. BARANY, K., BARANY, M., GILLIS, J. M. & KUSHMERICK, M. J. (1979) Phosphorylation-dephosphorylation of the 18 000 dalton light chain of myosin during the contraction relaxation cycle of frog muscle.J. biol. Chem. 254, 3617–23.

  3. BARSOTTI, R. J. & BUTLER, T. M. (1981) Effect of myosin LC2 phosphorylation on high-energy phosphate usage in contracting skeletal muscle.Biophys J. 33, 234a.

  4. BARSOTTI, R. J. & BUTLER, T. M. (1982) Chemical energy usage in the mouse EDL: effect of tetanus duration, prestimulation and muscle length.Fed. Proc. 41, 979.

  5. BLINKS, J. R., RUDEL, R. & TAYLOR, S. R. (1978) Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin.J. Physiol. 277, 291–323.

  6. BUTLER, T. M., SIEGMAN, M. J., MOOERS, S. U. & BARSOTTI, R. J. (1983) Myosin light chain phosphorylation does not modulate crossbridge cycling rate in mouse skeletal muscle.Science 220, 1167–9.

  7. CAVADORE, J.-C., MOLLA, A., HARRICANE, M.-C., GABRION, B. Y. & DEMAILLE, J. C. (1982) Subcellular localization of myosin light chain kinase in skeletal, cardiac and smooth muscles.Proc. natn. Acad. Sci. 79, 3475–9.

  8. COOKE, R. & BIALEK, W. (1979) Contraction of glycerinated muscle fibers as a function of ATP concentration.Biophys. J. 28, 241–8.

  9. COOKE, R., FRANKS, K., RITZ-GOLD, C. J., TOSTE, T., BLUMENTHAL, D. K. & STULL, J. T. (1981) The function of myosin light chain phosphorylation in skeletal muscle.Biophys. J. 33, 235a.

  10. COOKE, R., FRANKS, K. & STULL, J. T. (1982) Myosin phosphorylation regulates the ATPase activity of permeable skeletal muscle fibers.FEBS Lett. 144, 33–7.

  11. CROW, M. T. & KUSHMERICK, M. J. (1982a) Chemical energetics of slow and fast-twitch muscles of the mouse.J. gen. Physiol. 79, 147–66.

  12. CROW, M. T. & KUSHMERICK, M. J. (1982b) Myosin light chain phosphorylation is associated with a decrease in the energy cost for contraction in fast twitch mouse muscle.J. biol. Chem. 257, 2121–4.

  13. CROW, M. T. & KUSHMERICK, M. J. (1982c) Phosphorylation of myosin light chains in mouse fast-twitch muscle associated with reduced actomyosin turnover rate.Science 217, 835–7.

  14. DABROWSKA, R., HINKINS, S., WALSH, M. P. & HARTSHORNE, D. J. (1982) The binding of smooth muscle myosin light chain kinase to actin.Biochem. Biophys. Res. Commun. 107, 1524–31.

  15. DILLON, P. F., AKSOY, M. O., DRISKA, S. P. & MURPHY, R. A. (1981) Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle.Science 211, 495–7.

  16. EDWARDS, R. H. T., HILL, D. K. & JONES, D. A. (1975) Metabolic changes associated with the slowing of relaxation in fatigued mouse muscle.J. Physiol. 251, 287–301.

  17. EDMAN, K. A. P. & MATTIAZZI, A. R. (1981) Effects of fatigue and altered pH on isometric force and velocity of shortening at zero load in frog muscle fibers.J. Musc. Res. Cell Motility 2, 321–33.

  18. EGGLETON, P., ELSDEN, S. R. & GOUGH, N. (1943) The estimation of creatine and of diacetyl.Biochem. J. 37, 526–9.

  19. FRANK, J. S. & WINEGRAD, S. (1976) Effect of muscle length on45Ca efflux in resting and contracting skeletal muscle.Am. J. Physiol. 231, 555–9.

  20. GUERRIERO, V., ROWLEY, D. R. & MEANS, A. (1981) Production and characterization of an antibody to myosin light chain kinase and intracellular localization of the enzyme.Cell 27, 449–58.

  21. HOHORST, H. J. (1963) L (+) Lactate. Determination with lactic dehydrogenase and DPN. InMethods of Enzymatic Analysis (edited by BERGMEYER, H. U.), pp. 266–270. New York: Academic Press.

  22. HOLROYDE, M. J., SMALL, D. A. P., HOWE, E. & SOLARÖ, R. J. (1979) The calcium binding properties of phosphorylated and unphosphorylated cardiac and skeletal myosins.J. biol. Chem. 254, 6478–80.

  23. HOMSHER, E. & KEAN, C. J. (1978) Skeletal muscle energetics and metabolism.Ann. Rev. Physiol. 40, 93–131.

  24. HOMSHER, E., MOMMAERTS, W. F. H. M., RICCHIUTI, N. V. & WALLNER, A. (1972) Activation heat, activation metabolism and tension-related heat in frog semitendinosus muscles.J. Physiol 220, 601–25.

  25. JULIAN, F. J. (1971) The effect of calcium of the force-velocity relation of briefly glycerinated frog muscle fibres.J. Physiol. 218, 117–45.

  26. JULIAN, F. J. & MOSS, R. L. (1981) Effects of calcium and ionic strength on shortening velocity and tension development in frog skinned muscle fibres.J. Physiol. 311, 179–99.

  27. KAKOL, I., KASMAN, K. & MICHNICKA, M. (1982) The phosphorylation-dephosphorylation process as a myosin-linked regulation of superprecipitation of fast skeletal muscle myosin.Biochim. biophys. Acta 704, 437–43.

  28. KRETZSCHMAR, K. M. & WILKIE, D. R. (1969) A new approach to freezing tissues rapidly.J. Physiol., Lond. 202, 66–7P.

  29. KUSHMERICK, M. J., LARSON, R. E. & DAVIES, R. E. (1969) The chemical energetics of muscle contraction. I. Activation heat, heat of shortening, and ATP utilization for activation-relaxation processes.Proc. R. Soc. 174, 293–313.

  30. KUSHMERICK, M. J. & PAUL, R. J. (1977) Chemical energetics in repeated contractions of frog sartorius muscle at 0° C.J. Physiol. 267, 249–60.

  31. LANNERGREN, J. (1978) The force-velocity relation of isolated twitch and slow muscle ofXenopus laevis.J. Physiol. 283, 501–21.

  32. MANNING, D. R. & STULL, J. T. (1979) Myosin light chain phosphorylation and phosphorylaseA activity in rat extensor digitorum longus muscle.Biochem. Biophys. Res. Commun. 90, 164–70.

  33. MICHNICKA, M., KASMAN, K. & KAKOL, I. (1982) The binding of actin to phosphorylated and dephosphorylated myosin.Biochem. biophys. Acta 704, 470–5.

  34. MORGAN, M., PERRY, S. V. & OTTAWAY, J. (1976) Myosin light-chain phosphatase.Biochem. J. 157, 687–97.

  35. MOSS, R. L. (1982) The effect of calcium on the maximum velocity of shortening in skinned skeletal muscle fibres of the rabbit.J. Musc. Res. Cell Motility 3, 295–311.

  36. MOSS, R. L., GIULIAN, G. C. & GREASER, M. L. (1982) Physiological effects accompanying the removal of myosin LC2 from skinned skeletal muscle fibers.J. biol. Chem. 257, 8588–91.

  37. O'FARRELL, P. H. (1975) High resolution two-dimensional electrophoresis of protein.J. biol. Chem. 250, 4007–21.

  38. PEMRICK, S. M. (1980) The phosphorylated L2 light chain of skeletal myosin is a modifier of the actomyosin ATPase.J. biol. Chem. 255, 8836–41.

  39. PERRIE, W. T., SMILLIE, L. B. & PERRY, S. V. (1973) A phosphorylated light-chain component of myosin from skeletal muscle.Biochem. J. 135, 151–4.

  40. RALL, J. A. (1980) Effects of previous activity on the energetics of activation in frog skeletal muscle.J. gen. Physiol. 75, 617–31.

  41. RITZ-GOLD, C. J., COOKE, R., BLUMENTHAL, D. K. & STULL, J. T. (1980) Light chain phosphorylation alters the conformation of skeletal muscle myosin.Biochem. Biophys. Res. Commun. 93, 209–14.

  42. RUEGG, C. J. (1971) Smooth muscle tone.Physiol. Rev. 51, 201–48.

  43. SMITH, I. C. H. (1972) Energetics of activation in frog and toad muscle.J. Physiol. 220, 583–99.

  44. STULL, J. T., BLUMENTHAL, D. K. & COOKE, R. (1980) Regulation of contraction by myosin phosphorylation. A comparison between smooth and skeletal muscles.Biochem. Pharm. 29, 2537–43.

  45. UVELIUS, B. (1979) Shortening velocity, active force and homogenicity of contraction during electrically evoked twitches in smooth muscle from rabbit urinary bladder.Acta physiol. scand. 106, 481–6.

  46. WHITE, A., HANDLER, P. & SMITH, E. L. (1968)Principles of Biochemistry, 4th edn. New York: McGraw-Hill.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barsotti, R.J., Butler, T.M. Chemical energy usage and myosin light chain phosphorylation in mammalian skeletal muscle. J Muscle Res Cell Motil 5, 45–64 (1984).

Download citation


  • Tetanus
  • Extensor Digitorum Longus
  • Energy Usage
  • Regulatory Light Chain
  • Myosin Light Chain Phosphorylation