Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Quasi-elastic light scattering studies of rabbit skeletal myosin solutions

Summary

Homodyne measurements of the laser light spectrum scattered from solutions of rabbit skeletal muscle myosin in high ionic-strength media manifested a characteristicD value dependence on myosin concentrations. Using the typicalD versus myosin concentration curves obtained in the presence of 0.5m phosphate and 0.2m phosphate respectively as references, it has been shown that: (1) the observed phenomena are completely reversible; (2) minor components such as C- and F-protein do not significantly influence the measuredD values; and (3) the effect of preparation procedures on these dynamic light-scattering measurements is negligible. A common argument (irreversible aggregation) against a monomer-dimer equilibrium is ruled out; on the other hand, some doubt still remains with regard to the existence and physiological significance of a reversible dimerization.

This is a preview of subscription content, log in to check access.

References

  1. ARNAUD, B., LEGRÉ, J. & DRIFFORD, M. (1974) Dispositif d'analyse spectrale de la lumière laser diffusée par des solutions de macromolécules.J. Chim. Phys. 71, 591–6.

  2. BERNE, B. J. & PECORA, R. (1976)Dynamic Light Scattering. New York: Wiley Interscience.

  3. CARDINAUD, R. (1979) Proteolytic fragmentation of myosin. Location of SH1 and SH2 thiols.Biochimie 61, 807–21.

  4. CARDINAUD, R. (1980) Fate of the light chains in the course of proteolytic digestion of rabbit fast skeletal myosin.Biochimie 62, 135–45.

  5. CARLSON, F. D. (1975) The application of intensity fluctuation spectroscopy to molecular biology.Ann. Rev. Biophys. Bioeng. 4, 243–64.

  6. CARLSON, F. D. & HERBERT, T. J. (1972) A study of the self-association of myosin by intensity fluctuation spectroscopy.J. Phys. 33, 157–61.

  7. CUMMINS, H. Z., CARLSON, F. D., HERBERT, T. J. & WOODS, G. (1969) Translational and rotational diffusion constants of Tobacco mosaic virus from Rayleigh linewidths.Biophys. J. 9, 518–46.

  8. DE LA TORRE, J. G. & BLOOMFIELD, V. A. (1980) Conformation of myosin in dilute solution as estimated from hydrodynamic properties.Biochemistry 19, 5118–23.

  9. EATON, B. L. & PEPE, E. A. (1974) Myosin filaments showing a 430 Å axial repeat periodicity.J. Molec. Biol. 82, 421–3.

  10. ELLIOTT, A. & OFFER, G. (1978) Shape and flexibility of the myosin molecule.J. Molec. Biol. 123, 505–19.

  11. EMES, C. & ROWE, A. J. (1978) Hydrodynamic studies on the self association of vertebrate skeletal muscle myosin.Biochem. Biophys. Acta 537, 110–24.

  12. FUJIME, S. (1970) Quasi elastic light scattering from solutions of macromolecules. I. Doppler broadening of light scattered from solutions of Tobacco mosaic virus particle.J. Phys. Soc. Japan 29, 416–30.

  13. GODFREY, J. A. & HARRINGTON, W. F. (1970a) Self-association in the myosin system at high ionic strength. I. Sensitivity of the interaction to pH and ionic environment.Biochemistry 9, 886–93.

  14. GODFREY, J. A. & HARRINGTON, W. F. (1970b) Self-association in the myosin system at high ionic strength. II. Evidence for the presence of a monomer-dimer equilibrium.Biochemistry 9, 894–908.

  15. HARRINGTON, W. F. & BURKE, M. (1972) Geometry of the myosin dimer in high salt media. Association behaviour of rod segments from myosin.Biochemistry II, 1448–55.

  16. HARRINGTON, W. F. & KEGELES, G. (1973) Pressure effects in ultracentrifugation of interacting systems. InMethods in Enzymology (edited by COLOWICK, S. P. and KAPLAN, N. O.), Vol. 27, pp. 306–45. New York: Academic Press.

  17. HERBERT, T. J. & CARLSON, F. D. (1971) Spectroscopic study of the self-association of myosin.Biopolymers 10, 2231–852.

  18. HOLTZER, A. (1956) On the spontaneous aggregation of myosin.Archs Biochim. Biophys. 64, 507–9.

  19. HOLTZER, A. & LOWEY, S. (1959) The molecular weight, size and shape of the myosin molecule.J. Am. Chem. Soc. 81, 1370–7.

  20. HUXLEY, H. E. (1963) Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle.J. molec. Biol. 7, 281–308.

  21. JAKUS, M. A. & HALL, C. E. (1947) Studies of actin and myosin.J. biol. Chem. 167, 705–14.

  22. JOSEPHS, R. & HARRINGTON, W. F. (1966) Studies on the formation and physical chemical properties of synthetic myosin filaments.Biochemistry 5, 3474–87.

  23. JOSEPHS, R. & HARRINGTON, W. F. (1967) An unusual pressure dependence for a reversibly associating protein system; sedimentation studies on myosin.Proc. natn. Acad. Sci., U.S.A. 58, 1587–94.

  24. JOSEPHS, R. & HARRINGTON, W. F. (1968) On the stability of myosin filaments.Biochemistry 7, 2834–47.

  25. KAMINER, B. & BELL, A. L. (1966a) Myosin filamentogenesis: effects of pH and ionic concentration.J. molec. Biol. 20, 391–401.

  26. KAMINER, B. & BELL, A. L. (1966b) Synthetic myosin filaments.Science 151, 323–4.

  27. KIMURA, J., ARAI, K., TAKAHASHI, K. & WATANABE, S. (1980) Earliest event in the heat denaturation of myosin.J. Biochem. 88, 1703–13.

  28. LAKI, K. & CARROLL, W. R. (1955) Size of the myosin molecule.Nature 175, 389–90.

  29. MIYAHARA, M., KISHI, K. & NODA, H. (1980) F-protein, a myofibrillar protein interacting with myosin.J. Biochem. 87, 1341–5.

  30. MIYAHARA, M. & NODA, H. (1980) Interaction of C-protein with myosin.J. Biochem. 87, 1413–20.

  31. MOOS, C., OFFER, G., STARR, R. & BENNETT, P. (1975) Interaction of C-protein with myosin, myosin rod and light meromyosin.J. molec. Biol. 97, 1–9.

  32. MOOS, C., MASON, C. M., BESTERMAN, J. M., FENG, I. N. M. & DUBIN, J. H. (1978) The binding of skeletal muscle C-protein to F-actin and its relation to the interaction of actin with myosin subfragmentsJ. molec. Biol. 124, 571–86.

  33. NODA, H. & EBASHI, S. (1960) Aggregation of myosin A.Biochem. Biophys. Acta 41, 386–92.

  34. PARRISH, R. G. & MOMMAERTS, W. F. H. M. (1954) Studies on myosin. II. Some molecular kinetic data.J. biol. Chem. 209, 901–13.

  35. PITTZ, E. P., LEE, J. C., BABLOUZIAN, B., TOWNEND, R. & TIMASHEFF, S. N. (1973) Light scattering and differential refractometry. InMethods in Enzymology (edited by COLOWICK, S. P. and KAPLAN, N. O.), Vol. 27, pp. 209–256. New York: Academic Press.

  36. SCHURR, J. M. (1977) Dynamic light scattering of biopolymers and biocolloids.Crit. Rev. Biochem. 4, 371–432.

  37. SIEMANKOWSKI, R. F. & DREIZEN, P. (1975) Sedimentation equilibrium studies of myosin and C-proteins.Biophys. J. 15, 236a.

  38. STARR, R. & OFFER, G. (1971) Polypeptide chains of intermediate molecular weights in myosin preparations.FEBS Lett. 15, 40–4.

  39. SVEDBERG, T. & PEDERSEN, K. O. (1940)The Ultracentrifuge. Oxford: Oxford University Press.

  40. SZUCHET, S. (1977) Effect of purification procedures on the self-association of myosin at high ionic strength.Archs Biochem. Biophys. 180, 493–503.

  41. TAKAHASHI, K. (1978) Topography of the myosin molecule as visualized by an improved negative staining method.J. Biochem. 83, 905–8.

  42. WEAST, R. C. (1976)Handbook of Chemistry and Physics. 57th edn. Cleveland, Ohio: CRC.

  43. ZOBEL, C. R. & CARLSON, F. D. (1963) An electron microscopic investigation of myosin and some of its aggregates.J. molec. Biol. 7, 78–89.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cardinaud, R., Drifford, M. Quasi-elastic light scattering studies of rabbit skeletal myosin solutions. J Muscle Res Cell Motil 3, 313–332 (1982). https://doi.org/10.1007/BF00713040

Download citation

Keywords

  • Rabbit Skeletal Muscle
  • Scattering Study
  • Common Argument
  • Irreversible Aggregation
  • Skeletal Muscle Myosin