Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

An appraisal of the evidence for a sarcoplasmic reticulum membrane potential and its relation to calcium release in skeletal muscle

  • 75 Accesses

  • 62 Citations

This is a preview of subscription content, log in to check access.


  1. ADRIAN, R. H. (1978) Charge movement in the membrane of striated muscle.Ann. Rev. Biophys. Bioeng. 7, 85–112.

  2. BAYLOR, S. M. & CHANDLER, W. K. (1978) Optical indications of excitation-contraction coupling in striated muscle. InBiophysical Aspects of Cardiac Muscle (edited by MORAD, M.), pp. 207–228. New York: Academic Press.

  3. BAYLOR, S. M., CHANDLER, W. K. & MARSHALL, M. W. (1979) Temporal comparison of different optical signals associated with EC-coupling in frog muscle.Biophys. J. 25, 119a.

  4. BAYLOR, S. M., CHANDLER, W. K. & MARSHALL, M. W. (1981a) Comparison of optical signals in frog muscle obtained with three calcium indicator dyes.Biophys. J. 33, 150a.

  5. BAYLOR, S. M., CHANDLER, W. K. & MARSHALL, M. W. (1981b) Optical studies in skeletal muscle using probes of membrane potential.UCLA Forum of Medical Sciences 22.The Regulation of Muscle Contraction: Excitation Contraction Coupling (edited by GRINNELL, A. D. and BRAZIER, M. A. B.), pp. 97–130. New York: Academic Press.

  6. BAYLOR, S. M. & OETLIKER, H. (1975) Birefringence experiments on isolated skeletal muscle fibres suggest a possible signal from the sarcoplasmic reticulum.Nature 253, 97–101.

  7. BAYLOR, A. M. & OETLIKER, H. (1977a) A large birefringence signal preceding contraction in single twitch fibres of the frog.J. Physiol. 264, 141–62.

  8. BAYLOR, S. M. & OETLIKER, H. (1977b) The optical properties of birefringence signals from single muscle fibres.J. Physiol. 264, 163–98.

  9. BAYLOR, S. M. & OETLIKER, H. (1977c) Birefringence signals from surface and T-system membranes of frog single muscle fibres.J. Physiol. 264, 199–213.

  10. BEELER, T. J., FARMEN, R. H. & MARTONOSI, A. N. (1981) The mechanism of voltage-sensitive dye responses on sarcoplasmic reticulum.J. member. Biol. 62, 113–37.

  11. BEELER, T., RUSSELL, J. T. & MARTONOSI, A. (1979) Optical probe responses on sarcoplasmic reticulum: Oxacarbocyanines as probes of membrane potential.Eur. J. Biochem. 95, 579–91.

  12. BEZANILLA, F. & HOROWICZ, P. (1974) Fluorescence changes in frog muscle stained with Nile Blue associated with excitation-contraction coupling.Fed. Proc. 33, 1259.

  13. BEZANILLA, F. & HOROWICZ, P. (1975) Fluorescence intensity changes associated with contractile activation in frog muscle stained with Nile Blue A.J. Physiol. 246, 709–35.

  14. BLINKS, J. R., RÜDEL, R. & TAYLOR, S. R. (1978) Calcium transients in isolated amphibian skeletal muscle fibres: Detection with aequorin.J. Physiol. 277, 291–323.

  15. CAMPBELL, K. P., FRANZINI-ARMSTRONG, C. & SHAMOO, A. E. (1980) Further characterization of light and heavy sacroplasmic reticulum vesicles. Identification of the ‘sarcoplasmic reticulum feet’ associated with heavy sarcoplasmic reticulum vesicles.Biochim. Biophys. Acta 602, 97–116.

  16. CAMPBELL, K. P. & SHAMOO, A. E. (1980) Chloride-induced release of actively loaded calcium from light and heavy sarcoplasmic reticulum vesicles.J. membr. Biol. 54, 73–80.

  17. CAPUTO, C. (1978) Excitation and contraction processes in muscle.Ann. Rev. Biophys. Bioeng. 7, 63–83.

  18. CARNAY, L. D. & BARRY, W. H. (1969) Turbidity, birefringence, and fluorescence changes in skeletal muscle coincident with the action potential.Science 165, 608–9.

  19. CHANDLER, W. K., RAKOWKSY, R. F. & SCHNEIDER, M. F. (1976) Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle.J. Physiol. 254, 285–316.

  20. CHIESI, M. & INESI, G. (1979) The use of quench reagents for resolution of single transport cycles in sarcoplasmic reticulum.J. biol. Chem. 254, 10370–7.

  21. CHIESI, M. & INESI, G. (1980) Adenosine 5'-triphosphate dependent fluxes of managanese and hydrogen ions in sarcoplasmic reticulum vesicles.Biochemistry 19, 2912–8.

  22. CHIU, V. C. K. & HAYNES, D. H. (1980) Rapid kinetic study of the passive permeability of a Ca2+-ATPase rich fraction of the sarcoplamic reticulum.J. membr. Biol. 56, 203–18.

  23. COHEN, L. B., HILLE, B. & KEYNES, R. D. (1970) Changes in axon birefringence during the action potential.J. Physiol. 211, 495–515.

  24. COHEN, L. B., KEYNES, R. D. & HILLE, B. (1968) Light scattering and birefringence changes during nerve activity.Nature 218, 438–41.

  25. COHEN, L. B. & SALZBERG, B. M. (1978) Optical measurement of membrane potential.Rev. Physiol. Biochem. Pharmacol. 83, 35–88.

  26. CORAY, A., FRY, C. H., HESS, P., McGUIGAN, J. A. S. & WEINGART, R. (1980) Resting calcium in sheep cardiac tissue and in frog skeletal muscle measured with ion-selective microelectrodes.J. Physiol. 305, 60–1P.

  27. CORONADO, R., ROSENBERG, R. L. & MILLER, C. (1980) Ion selectivity, saturation, and block in a K+ selective channel from sarcoplasmic reticulum.J. gen. Physiol. 76, 425–46.

  28. COSTANTIN, L. L. (1975) Contractile activation in skeletal muscle.Prog. biophys. molec. Biol. 29, 197–224.

  29. DUGGAN, P. F. & MARTONOSI, A. (1970) IX. The permeability of sarcoplasmic reticulum membranes.J. gen. Physiol. 56, 147–67.

  30. EISENBERG, B. R. & EISENBERG, R. S. (1982) The T-SR junction in contracting single skeletal muscle fibres.J. gen. Physiol. 79, 1–19.

  31. ENDO, M. (1977) Calcium release from the sarcoplasmic reticulum.Physiol. Rev. 57, 71–108.

  32. FRANZINI-ARMSTRONG, C. (1970) Studies of the triad. I Structure of the junction in frog twitch fibers.J. Cell Biol. 47, 488–99.

  33. HASSELBACH, W. (1979) The sarcoplasmic calcium pump. A model of energy transduction in biological membranes. InTopics in Current Chemistry, Vol. 78, pp. 1–56. Berlin, Heidelberg, New York: Springer-Verlag.

  34. HASSELBACH, W. & MAKINOSE, M. (1963) Ueber den Mechanismus des Calciumtransportes durch die Membranen des sarkoplasmatischen Reticulums.Biochem. Z. 339, 94–111.

  35. HODGKIN, A. L. (1951) The ionoic basis of electrical activity in nerve and muscle.Biol. Rev. 26, 339–401.

  36. HODGKIN, A. L. & NAKAJIMA, S. (1972) The effect of diameter on the electrical constants of frog skeletal muscle fibres.J. Physiol. 221, 105–20.

  37. HOMSHER, E., MOMMAERTS, W. F. H. M., RICCHIUTI, N. V. & WALLNER, A. (1972) Activation heat, activation metabolism and tension-related heat in frog semitendinosus muscles.J. Physiol. 220, 601–25.

  38. HUXLEY, A. F. & TAYLOR, R. E. (1958) Local activation of striated muscle fibres.J. Physiol. 144, 426–44.

  39. KASAI, M., KANEMASA, T. & FUKUMOTO, S. (1979) Determination of reflection coefficients for various ions and neutral molecules in sarcoplasmic reticulum vesicles through osmotic volume change studied by stopped flow technique.J. membr. Biol. 51, 311–24.

  40. KATZ, B. & MILEDI, R. (1972) The statistical nature of the acetylcholine potential and its molecular components.J. Physiol. Lond. 224, 665–99.

  41. KOBAYASHI, T. & SUGI, H. (1980) Measurement of heat production during the summation of isometric contraction in frog skeletal muscle with an infrared radiometer.Jap. J. Physiol. 30, 617–29.

  42. KOMETANI, T. & KASAI, M. (1978) Ionic permeability of sarcoplasmic reticulum vesicles measured by light scattering method.J. member. Biol. 41, 295–308.

  43. KOVÁCS, L., SCHÜMPERLI, R. & SZÜCS, G. (1981) Calcium transients and birefringence signals in voltage-clamped cut skeletal muscle fibres.J. Physiol. 318, 35–6.

  44. LABARCA, P., CORONADO, R. & MILLER, G. (1980) Thermodynamic and kinetic studies of the gating behaviour of a K+-selective channel from the sarcoplasmic reticulum membrane.J. gen. Physiol. 76, 397–424.

  45. LABARCA, P. & MILLER, C. (1981) A K+-selective, three-state channel from fragmented sarcoplasmic reticulum of frog leg muscle.J. membr. Biol. 61, 31–8.

  46. LAU, Y. H., CASWELL, A. H., BRUNSCHWIG, J.-P., BAERWALD, R. J. & GARCIA, M. (1979) Lipid analysis and freeze-fracture studies on isolated transverse tubules and sarcoplasmic reticulum subfractions of skeletal muscle.J. biol. Chem. 254, 540–6.

  47. LÜTTGAU, H. C. & MOISESCU, D. G. (1978) Ion movements in skeletal muscle in relation to the activation of contraction. InPhysiology of Membrane Disorders (edited by ANDREOLI, T. E., HOFFMAN, J. F. and FANESTIL, D. D., pp. 493–515. New York: Plenum.

  48. MADEIRA, V. M. C. (1980) Proton movements across the membranes of sarcoplasmic reticulum during the uptake of calcium ions.Archs Biochem. Biophys. 200, 319–25.

  49. MAKINOSE, M. & HASSELBACH, W. (1963) Die Regulation der freien Calcium-Konzentration in den Muskelfasern durch die Erschlaffungsvesikel.Pflügers Arch. 278, 9.

  50. MATHIAS, R. T., LEVIS, R. A. & EISENBERG, R. S. (1980) Eletrical models of excitation-contraction coupling and charge movement in skeletal muscle.J. gen. Physiol. 76, 1–31.

  51. McKINLEY, D. & MEISSNER, G. (1978) Evidence for a K+, Na+ permeable channel in sarcoplasmic reticulum.J. membr. Biol. 44, 159–86.

  52. MEISSNER, G. (1981) Calcium transport and monovalent cation and proton fluxes in sarcoplasmic reticulum vesicles.J. biol. Chem. 256, 636–43.

  53. MEISSNER, G., CONNER, G. E. & FLEISCHER, S. (1973) Isolation of sarcoplasmic reticulum by zonal centrifugation and purification of Ca2+-pump and Ca2+-binding proteins.Biochim. Biophys. Acta 298, 246–69.

  54. MEISSNER, G. & YOUNG, R. C. (1980) Proton permeability of sarcoplasmic reticulum vesicles.J. biol. Chem. 255, 6814–9.

  55. MILEDI, R., PARKER, I. & SCHALOW, G. (1977) Measurement of calcium transients in frog muscle by the use of arsenazo III.Proc. R. Soc. Lond. 198, 201–10.

  56. MILLER, C. (1978) Voltage-gated cation conductance channel from fragmented sarcoplasmic reticulum: Steady-state electrical properties.J. membr. Biol. 40, 1–23.

  57. MILLER, C. & RACKER, E. (1976) Ca2+-induced fusion of fragmented sarcoplasmic reticulum with artificial planar bilayers.J. membr. Biol. 30, 283–300.

  58. MILLER, C. & ROSENBERG, R. L. (1979) A voltage-gated cation conductance channel from fragmented sarcoplasmic reticulum. Effects of transition metal ions.Biochemistry 18, 1138–45.

  59. MOBLEY, B. A. (1979) Chloride and osmotic contractures in skinned frog muscle fibers.J. membr. Biol. 46, 315–29.

  60. MOBLEY, B. A. & EISENBERG, B. R. (1975) Sizes of components in frog skeletal muscle measured by methods of stereology.J. gen. Physiol. 66, 31–45.

  61. NESTRUCK-GOYKE, A. C. & HASSELBACH, W. (1981) Preparative isolation of Apo(Ca2+-ATPase) from sarcoplasmic reticulum and the reactivation by Lysophosphatidylcholine of Ca2+-dependent ATP hydrolysis and partial-reaction steps of the enzyme.Eur. J. Biochem. 114, 339–47.

  62. OETLIKER, H. (1980) Studies on the mechanism causing optical excitation-contraction coupling signals in skeletal muscle.J. Physiol. 305, 26–7P.

  63. OETLIKER, H. (1981a) Divalent cation concentration-dependent fluorescence of isolated sarcoplasmic reticulum vesicles stained with Indodicarbocyanine.J. Physiol., Lond. 318, 11–2P.

  64. OETLIKER, H. (1981b) Does Indodicarbocyanine fluorescence reflect membrane potential of the sarcoplasmic reticulum in skeletal muscle? InAdvances in Physiological Science, Vol. 5 (edited by VARGA, E., KÖVÉR, A., KOVÁCS, T. and KOVÁCS, L.), pp. 345–361. Budapest: Akadémiai Kiadó.

  65. OETLIKER, H. & BAYLOR, S. M. (1974) An early optical signal in isolated single fibres of frog skeletal muscle.Experientia 30, 9.

  66. OETLIKER, H., BAYLOR, S. M. & CHANDLER, W. K. (1975) Simultaneous changes in fluorescence and optical retardation in single muscle fibres during activity.Nature 257, 693–6.

  67. OETLIKER, H. & SCHÜMPERLI, R. A. (1978) Is the early large birefringence signal in skeletal muscle due to latency relaxation?Physiologist 21, 86.

  68. OETLIKER, H. & SCHÜMPERLI, R. A. (1979) Birefringence signals and tension development in single frog muscle fibres at short stimulus intervals.Experientia 35, 496–8.

  69. OETLIKER, H. & SCHÜMPERLI, R. A. (1980) Birefringence signal and latency relaxation in single frog muscle fibres.J. Physiol. 307, 30–1P.

  70. OGAWA, Y. (1970) Some properties of fragmented frog sarcoplasmic reticulum with particular reference to its response to caffeine.J. Biochem., Tokyo 67, 667–83.

  71. PEACHEY, L. D. (1965) The sarcoplasmic reticulum and transverse tubules of the frog's sartorius.J. Cell Biol. 25, 209–31.

  72. ROBERTSON, S. P., JOHNSON, J. D. & POTTER, J. D. (1981) The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+.Biophys. J. 34, 559–69.

  73. RUSSELL, J. T., BEELER, T. & MARTONSOI, A. (1979a) Optical probe responses on sarcoplasmic reticulum. Oxacarbocyanines.J. biol. Chem. 254, 2040–6.

  74. RUSSELL, J. T., BEELER, T. & MARTONOSI, A. (1979b) Optical probe responses on sarcoplasmic reticulum. Merocyanine and Oxonol dyes.J. biol. Chem. 254, 2047–52.

  75. SCALES, D. & INESI, G. (1976) Assembly of ATPase protein in sarcoplasmic reticulum membranes.Biophys. J. 16, 735–51.

  76. SCHINDLER, H. G. & QAST, U. (1980) Functional acetylcholine receptor fromTorpedo marmorata in planar membranes.Proc. natn. Acad. Sci., U.S.A. 77, 3052–6.

  77. SCHNEIDER, M. F. (1981) Membrane charge movement and depolarization-contraction coupling.Ann. Rev. Physiol. 43, 507–17.

  78. SCHÜMPERLI, R. A. & OETLIKER, H. (1981) Birefringence signal and latency relaxation in frog skeletal muscle fibres. InAdvances in Physiological Science, Vol. 5, (edited by VARGA, E., KÖVÉR, A., KOVÁCS, T. and KOVÁCS, L.), pp. 363–373. Budapest: Académiai Kiadó.

  79. SHOSAN, V., MACLENNAN, D. H. & WOOD, D. S. (1981) A proton gradient controls a calcium-release channel in sarcoplasmic reticulum.Proc. natn. Acad. Sci., U.S.A. 78, 4828–32.

  80. SIMS, P. J., WAGGONER, A. S., WANG, C.-H. & HOFFMAN, J. F. (1974) Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles.Biochemistry 13, 3315–30.

  81. SMITH, I. C. H. (1972) Energetics of activation in frog and toad muscle.J. Physiol. 220, 583–99.

  82. SOMMER, J. R., WALLACE, N. R. & HASSELBACH, W. (1978) The collapse of the sarcoplasmic reticulum in skeletal muscle.Z. Naturforsch. 33c, 561–73.

  83. SOMMER, J. R., WALLACE, N. R. & JUNKER, J. (1980) The intermediate cisterna of the sarcoplasmic reticulum of skeletal muscle.J. Ultrastruct. Res. 71, 126–42.

  84. SPIECKER, W., MELZER, W. & LÜTTGAU, H. C. (1979) Extracellular Ca2+ and excitation-contraction coupling.Nature 280, 158–60.

  85. SOMLYO, A. V., SCHUMAN, H. & SOMLYO, A. P. (1977) Composition of sarcoplasmic reticulumin situ by electron probe X-ray microanalysis.Nature 268, 556–8.

  86. SOMLYO, A. P., SOMLYO, A. V., GONZALEZ-SERRATOS, H., SCHUMAN, H. & McCLELLAN, G. (1980a) The sarcoplasmic reticulum and its composition in resting and in contracting muscle. InMuscle Contraction: Its Regulatory Mechanisms (edited by EBASHI, S.et al.), pp. 421–433. Berlin, Heidelberg, New York: Springer Verlag.

  87. SOMLYO, A. V., GONZALEZ-SERRATOS, H., SCHUMAN, H., McCLELLAN, G. & SOMLYO, A. P (1980b) Calcium release and sarcoplasmic reticulum composition in resting and in activated frog skeletal muscle: Electron probe analysis.Proc. 28th Int. Congr. Physiol. Sci., p. 249.

  88. STEPHENSON, E. W. (1978) Properties of chloride-stimulated45Ca flux in skinned muscle fibers.J. gen. Physiol. 71, 411–30.

  89. STEPHENSON, E. W. (1981) Activation of fast skeletal muscle: contributions of studies on skinned fibers.Am. J. Physiol. 240, C1–19.

  90. STEPHENSON, E. W. & PODOLSKY, R. J. (1977a) Regulation by magnesium of intracellular calcium movement in skinned muscle fibers.J. gen. Physiol. 69, 1–16.

  91. STEPHENSON, E. W. & PODOLSKY, R. J. (1977b) Influence of magnesium on chloride-induced calcium release in skinned muscle fibers.J. gen. Physiol. 69, 1–16.

  92. STROMER, M. & HASSELBACH, W. (1976) Fusion of isolated sarcoplasmic reticulum membranes.Z. Naturforsch. 31c, 703–7.

  93. SUAREZ-KURTZ, G. & PARKER, I. (1977) Birefringence signals and calcium transients in skeletal muscle.Nature 270, 746–8.

  94. VANDERKOOI, J. M., JEROKOMAS, A., NAKAMURA, H. & MARTONOSI, A. (1977) Fluorescence energy transfer between Ca++ transport ATPase molecules in artificial membranes.Biochemistry 16, 1262–7.

  95. VERGARA, J., BEZANILLA, F. & SALZBERG, B. M. (1978) Nile blue fluorescence signals from cut single muscle fibers under voltage or current clamp conditions.J. gen. Physiol. 72, 775–800.

  96. WAGGONER, A. S., WANG, C. H. & TOLLES, R. L. (1977) Mechanism of potential-dependent light absorption changes of lipid bilayer membranes in the presence of cyanine and oxonol dyes.J. membr. Biol. 33, 109–40.

  97. WAGGONER, A. S. (1979) Dye indicators of membrane potential.Ann. Rev. Biophys. Bioeng. 8, 47–68.

  98. WEBER, A., HERZ, R. & REISS, I. (1966) Study of the kinetics of calcium transport by isolated fragmented sarcoplasmic reticulum.Biochem. Z. 345, 329–69.

  99. WEIDMANN, S. (1966) The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle.J. Physiol. 187, 323–42.

  100. WINEGRAD, S. (1968) Intracellular calcium movements of frog skeletal muscle during recovery from tetanus.J. gen. Physiol. 51, 65–83.

  101. WINEGRAD, S. (1970) The intracellular site of calcium activation of contraction in frog skeletal muscle.J. gen. Physiol. 55, 77–88.

  102. YAMADA, K., MASHIMA, H. & EBASHI, S. (1976) The enthalpy change accompanying the binding of calcium to troponin relating to the activation heat production of muscle.Proc. Japan Acad. 52, 252–5.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oetliker, H. An appraisal of the evidence for a sarcoplasmic reticulum membrane potential and its relation to calcium release in skeletal muscle. J Muscle Res Cell Motil 3, 247–272 (1982). https://doi.org/10.1007/BF00713037

Download citation


  • Calcium
  • Skeletal Muscle
  • Membrane Potential
  • Sarcoplasmic Reticulum
  • Calcium Release