Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Molecular mechanisms of exocytosis: The adrenal chromaffin cell as a model system

Summary

  1. 1.

    The release of neurotransmitters, hormones, and enzymes involves exquisitely regulated events which ultimately result in the fusion of the secretory vesicle with the cell's plasma membrane, releasing the vesicle contents into the extracellular space.

  2. 2.

    The biochemical and cellular mechanisms mediating exocytosis have been extensively studied in a model system of primary cultured adrenal chromaffin cells.

  3. 3.

    This paper briefly reviews current understanding, and directions of future studies in exocytosis using this model system.

This is a preview of subscription content, log in to check access.

References

  1. Amy, C. M., and Krishner, N. (1981). Phosphorylation of adrenal medulla cell proteins in conjunction with stimulation of catecholamine secretion.J. Neurochem. 36847–854.

  2. Baker, P. F., and Knight, D. E. (1984). Calcium control of exocytosis in bovine adrenal medullary cells.TINS April:120–126.

  3. Boulter, J.,et al. (1986). Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptorα-subunit.Nature 319368–374.

  4. Burgoyne, R. D. (1984). Mechanisms of secretion from adrenal chromaffin cells.Biochim. Biophys. Acta 779201–216.

  5. Burgoyne, R. D. (1987). Control of exocytosis.Nature 328112–113.

  6. Cena, V., Nicolas, G. P., Sanchez-Garcia, P., Kirpekar, S. M., and Garcia, A. G. (1983). Pharmacological dissection of receptor-associated and voltage-sensitive ionic channels involved in catecholamine release.Neuroscience 101455–1462.

  7. Cheek, T. R., and Burgoyne, R. D. (1986). Nicotine-evoked disassembly of cortical actin filaments in adrenal chromaffin cells.FEBS 207110–114.

  8. Cobbold, P. H., Cheek, T. R., Cuthbertson, K. S. R., and Burgoyne, R. D. (1987). Calcium transient in single adrenal chromaffin cells detected with aequorin.FEBS 21144–48.

  9. Creutz, C.,et al. (1987). The roles of Ca2+-dependent membrane-binding proteins in the regulation and mechanism of exocytosis. InCell Fusion (A. E. Sowers, Ed.), Plenum Press, New York, pp. 45–68.

  10. Dunn, L. A., and Holz, R. W. (1983). Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells.J. Biol. Chem. 2854989–4993.

  11. Fowler, V. M., and Pollard, H. (1982). Chromaffin granule membrane-F-actin interaction are calcium sensitive.Nature 295336–339.

  12. Garcia, A. G.,et al. (1984). Dihydropyridine BAY-K-8644 activated chromaffin cell calcium channels.Nature 30969–71.

  13. Geisow, M. J., Burgoyne, R. D., and Harris, A. (1982). Interaction of calmodulin with adrenal chromaffin granule membranes.FEBS Lett. 14369–72.

  14. Hille, B. (1984).Ionic Channels of Excitable Membranes, Sinnauer, Sunderland, Mass., pp. 205–225.

  15. Holz, R. W., Senter, R. A., and Frye, R. A. (1982). Relationship between Ca2+ uptake and catecholamine secretion in primary dissociated cultures of adrenal medulla.J. Neurochem. 39635–645.

  16. Kenigsberg, R. L., Cote, A., and Trifaro, J. M. (1982). Trifluoperazine, a calmodulin inhibitor, blocks secretion in cultured chromaffin cells at a step distal from calcium entry.Neuroscience 72277–2286.

  17. Kerlavage, A. R.,et al. (1986). Molecular structure and evolution of adrenergic and cholinergic receptors.Proteins 1287–301.

  18. Kikkawa, U., and Nishizuka, Y. (1986). The role of protein kinase C in transmembrane signalling.Annu. Rev. Cell Biol. 2149–179.

  19. Knight, D. E., and Baker, P. F. (1982). Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields.J. Membrane Biol. 68107–140.

  20. Knight, D. E., and Baker, P. F. (1983). The phoral ester TPA increase the affinity of exocytosis for calcium in “leaky” adrenal medullary cells.FEBS 16098–100.

  21. Knight, D. E., and Kesteven, N. T. (1983). Evoked transient intracellular free Ca2+ changes and secretion in isolated bovine adrenal medullary cells.Proc. R. Soc. Lond. B 218177–199.

  22. Knight, D. E., Tonge, D. A., and Baker, P. F. (1985). Inhibition of exocytosis in bovine adrenal medullary cells by botulinum toxin type D.Nature 317719–721.

  23. Kondo, H., Wolosewick, J. J., and Pappas, G. D. (1982). The microtrabecular lattice of the adrenal medulla revealed by polyethylene glycol embedding and stereo electron microscopy.J. Neurosci. 257–65.

  24. Mundy, D. I., and Strittmatter, W. J. (1985). Requirement for metalloendoprotease in exocytosis: Evidence in mast cells and adrenal chromaffin cells.Cell 40645–656.

  25. Penner, R., Neher, E., and Dreyer, F. (1986). Intracellularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells.Nature 32476–78.

  26. Perrin, D., and Aunis, D. (1985). Reorganization ofα-fodrin induced by stimulation in secretory cells.Nature 315589–592.

  27. Perrin, D., Langley, O. K., and Aunis, D. (1987). Anti-α-fodrin inhibits secretion from permeabilized chromaffin cells.Nature 326498–501.

  28. Pocotte, S. L.,et al. (1985). Effects of phorbol ester on catecholamine secretion and protein phosphorylation in adrenal medullary cell cultures.Proc. Natl. Acad. Sci. 82930–934.

  29. Swilem, A.-M., Hawthorne, J. N., and Azila, N. (1983). Catecholamine secretion by perfused bovine adrenal medulla in response to nicotinic activation is inhibited by muscarinic receptors.Biochem. Pharmacol. 323873–3874.

  30. Strittmatter, W. J., Couch, C. B., and Mundy, D. I. (1985). Role of proteins in the fusion of biological membranes. InMembrane Fluidity in Biology, Vol IV (R. C. Aloia and J. Boggs, Eds.), Academic Press, New York, pp. 259–291.

  31. Waymire, J. C.,et al. (1983). Bovine adrenal chromaffin cells: High yield purification and viability in suspension culture.J. Neurosci. Methods 7329–351.

  32. Whitaker, M. (1985). Polyphosphoinositide hydrolysis is associated with exocytosis in adrenal medullary cells.FBS 189137–140.

  33. Wilson, S. P., and Kirshner, N. (1983). Calcium-evoked secretion from digitonin-permeabilized adrenal medullary chromaffin cells.J. Biol. Chem. 2584994–5000.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Strittmatter, W.J. Molecular mechanisms of exocytosis: The adrenal chromaffin cell as a model system. Cell Mol Neurobiol 8, 19–25 (1988). https://doi.org/10.1007/BF00712907

Download citation

Key words

  • exocytosis
  • adrenal gland
  • chromaffin cells
  • receptors
  • ion channels
  • cystolic proteins
  • cytoskeletal proteins