Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Voltage dependence of membrane charge movement and calcium release in frog skeletal muscle fibres

  • 30 Accesses

  • 37 Citations

Summary

Voltage dependent membrane charge movement (gating current) and the release of Ca2+ from intracellular stores have been measured simultaneously in intact frog skeletal muscle fibres. Charge movement was measured using the three microelectrode voltage clamp technique. Ca2+ release was measured using the metallochromic indicator dye arsenazo III. Fibres were bathed in 2.3×hypertonic solutions to prevent contraction. Rb+, tetraethylammonium and tetrodotoxin (TTX) were used to eliminate voltage-dependent ionic currents. The maximum rate of Ca2+ release from the sarcoplasmic reticulum in response to voltage-clamp step depolarizations to 0 mV was calculated using the dye-related parameters of model 2 of Bayloret al. (1983) and a method described in the Appendix for calculating a scaling factor (1+p) that accounts for the additional Ca2+ buffering power of the indicator dye. The estimates of the maximum rate of Ca2+ release at 5–6° C ranged from 3 to 19 µM ms−1 in the 17 fibres examined. The mean value was 8.9±1.1 µM ms−1 (S.E.M.) The maximum rate of Ca2+ release was linearly related to the magnitude of the nonlinear membrane change moved during suprathreshold depolarizing steps. The voltage dependence of charge movement and the maximum rate of Ca2+ releases were nearly identical at 6° C. The voltage-dependence of the delay between the test step and the onset of Ca2+ release could be adequately described by an equation having the same functional form as the voltage dependence of nonlinear charge movement. The relationship between the test pulse voltage and the delay was shifted to more negative voltages and to shorter delays as the temperature was raised from 6° C to 15° C. The inactivation of Ca2+ release was found to occur at more negative holding voltages and to be more steeply voltage dependent than the immobilization of nonlinear membrane charge movement. The above data are discussed using the ‘hypothetical coupler’ model of excitation-contraction coupling (Milediet al., 1983b) applied to the specific case in which each mobile charge group controls the gating of one Ca2+ release site in the sarcoplasmic reticulum.

This is a preview of subscription content, log in to check access.

References

  1. ADRIAN, R. H. & ALMERS, W. (1976a) The voltage dependence of membrane capacity.J. Physiol. 254 314–38.

  2. ADRIAN, R. H. & ALMERS, W. (1976b) Charge movement in the membrane of striated muscle.J. Physiol. 254 339–60.

  3. ADRIAN, R. H., CHANDLER, W. K. & HODGKIN, A. L. (1969) The kinetics of mechanical activation in frog muscle.J. Physiol. 204 207–30.

  4. ADRIAN, R. H., CHANDLER, W. K. & HODGKIN, A. L. (1970) Voltage clamp experiments in striated muscle fibres.J. Physiol. 208 607–44.

  5. ADRIAN, R. H., CHANDLER, W. K. & RAKOWSKI, R. F. (1976) Charge movements and mechanical repriming in skeletal muscle.J. Physiol 254 361–88.

  6. ADRIAN, R. H. & PERES, A. (1979) Charge movement and membrane capacity in frog muscle.J. Physiol. 289 83–97.

  7. ADRIAN, R. H. & RAKOWSKI, R. F. (1978) Reactivation of membrane charge movement and delayed potassium conductance in skeletal muscle fibres.J. Physiol. 278 533–57.

  8. ALMERS, W. & BEST, P. M. (1976) Effects of tetracaine on displacement currents and contraction in frog skeletal muscle.J. Physiol. 262 583–611.

  9. BAYLOR, S. M., CHANDLER, W. K. & MARSHALL, M. W. (1982a) Optical measurements of intracellular pH and magnesium in frog skeletal muscle fibres.J. Physiol. 331 105–37.

  10. BAYLOR, S. M., CHANDLER, W. K. & MARSHALL, M. W. (1982b) Use of metallochromic dyes to measure changes in myoplasmic calcium during activity in frog skeletal muscle fibres.J. Physiol. 331 139–77.

  11. BAYLOR, S. M., CHANDLER, W. K. & MARSHALL, M. W. (1982c) Dichroic components of arsenazo III and dichlorophosphonazo III signals in skeletal muscle fibres.J. Physiol. 331 179–210.

  12. BAYLOR, S. M., CHANDLER, W. K. & MARSHALL, M. W. (1983) Sarcoplasmic reticulum calcium release in frog skeletal muscle fibres estimated from arsenazo III calcium transients.J. Physiol. 334 625–66.

  13. BLINKS, J. R., RUDEL, R. & TAYLOR, S. R. (1978) Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin.J. Physiol. 277 291–323.

  14. CHANDLER, W. K., RAKOWSKI, R. F. & SCHNEIDER, M. F. (1976a) A non-linear voltage dependent charge movement in frog skeletal muscle.J. Physiol. 254 245–83.

  15. CHANDLER, W. K., RAKOWSKI, R. F. & SCHNEIDER, M. F. (1976b) Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle.J. Physiol. 254 285–316.

  16. COSTANTIN, L. L. (1974) Contractile activation in frog skeletal muscle.J. gen. Physiol. 63 657–74.

  17. GILLIS, J. M., THOMASON, D., LEFEVRE, J. & KRETSINGER, R. H. (1982) Parvalbumins and muscle relaxation: a computer simulation study.J. Musc. Res. Cell Motility 3 377–98.

  18. HODGKIN, A. L. & HOROWICZ, P. (1960) Potassium contractures in single muscle fibres.J. Physiol. 153 386–403.

  19. HOROWICZ, P. & SCHNEIDER, M. F. (1981a) Membrane charge moved at contraction thresholds in skeletal muscle fibres.J. Physiol. 314 595–633.

  20. HOROWICZ, P. & SCHNEIDER, M. F. (1981b) Membrane charge movement in contracting and non-contracting skeletal muscle fibres.J. Physiol. 314 565–93.

  21. HUANG, C. L. H. (1982) Pharmacological separation of charge movement components in frog skeletal muscle.J. Physiol. 324 357–87.

  22. HUI, C. S. (1981) Effect of dantrolene sodium on charge movement in frog twitch muscle fibers.Biophys. J. 33, 152a.

  23. HUI, C. S. (1982a) Activation and inactivation properties of two charge species in frog skeletal muscle.Biophys. J. 37, 24a.

  24. HUI, C. S. (1982b) Pharmacological dissection of charge movement in frog skeletal muscle fibers.Biophys. J. 39 119–22.

  25. HUI, C. S. (1983) Differential properties of two charge components in frog skeletal muscle.J. Physiol. 337 531–52.

  26. KENDRICK, N. C. RATZLAFF, R. W. & BLAUSTEIN, M. P. (1977) Arsenazo III as an indicator for ionized calcium in physiological salt solutions: Its use for determination of the CaATP dissociation constant.Analyt. Biochem. 83 433–50.

  27. KOVACS, L., RIOS, E. & SCHNEIDER, M. F. (1979) Calcium transients and intramembrane charge movement in skeletal muscle fibres.Nature 279 391–6.

  28. MELZER, W., RIOS, E. & SCHNEIDER, M. F. (1984) Time course of calcium release and removal in skeletal muscle fibres.Biophys. J. 45 637–41.

  29. MILEDI, R., PARKER, I. & SCHALOW, G. (1977a) Measurement of calcium transients in frog muscle by the use of arsenazo III.Proc. R. Soc. Lond. Ser. B. 198 201–10.

  30. MILEDI, R., PARKER, I. & SCHALOW, G. (1977b) Calcium transients in frog slow muscle fibres.Nature,268 750–2.

  31. MILEDI, R., PARKER, I. & ZHU, P. H. (1982) Calcium transients evoked by action potentials in frog twitch muscle fibres.J. Physiol. 333 655–79.

  32. MILEDI, R., PARKER, I. & ZHU, P. H. (1983a) Calcium transients in frog skeletal muscle fibres following conditioning stimuli.J. Physiol. 339 223–42.

  33. MILEDI, R., PARKER, I. & ZHU, P. H. (1983b) Calcium transients studied under voltage-clamp control in frog twitch muscle fibres.J. Physiol. 340 649–80.

  34. MULIERI, L. A. & ALPERT, N. R. (1982) Activation heat and latency relaxation in relation to calcium movement in skeletal and cardiac muscle.Can. J. Physiol. Pharmac. 60 529–41.

  35. PALADE, P. & VERGARA, J. (1982) Arsenazo III and antipyrylazo III calcium transients in single skeletal muscle fibres.J. gen. Physiol. 79 679–707.

  36. PALADE, P. & VERGARA, J. (1983) Stoichiometries of arsenazo III-Ca complexes.Biophys. J. 43 355–69.

  37. RAKOWSKI, R. F. (1978) Reprimed charge movement in skeletal muscle fibres.J. Physiol. 281 339–58.

  38. RAKOWSKI, R. F. (1981) Immobilization of membrane charge in frog skeletal muscle by prolonged depolarization.J. Physiol. 317 129–48.

  39. RAKOWSKI, R. F. & BEST, P. M. (1982) Measurement of membrane charge movement and intracellular Ca2+ release in frog skeletal muscle fibres.Biophys. J. 37, 23a.

  40. RAKOWSKI, R. F. & JAMES-KRACKE, M. R. (1984) Partial immobilization of membrane charge produces block of calcium release in frog skeletal muscle fibers.Biophys. J. 45, 48a.

  41. RIOS, E., MELZER, W. & SCHNEIDER, M. F. (1983) An intrinsic optical signal is related to the calcium transient of frog skeletal muscle.Biophys. J. 41, 396a.

  42. ROBERTSON, S. P., JOHNSON, J. D. & POTTER, J. D. (1981) The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin and myosin in response to transient increases in Ca2+.Biophys. J. 34 559–69.

  43. SCHNEIDER, M. F. & CHANDLER, W. K. (1973) Voltage dependent charge movement in skeletal muscle: A possible step in excitation-contraction coupling.Nature 242 244–6.

  44. THOMAS, M. V. (1979) Arsenazo III forms 2:1 complexes with Ca and 1:1 complexes with Mg under physiological conditions. Estimates of the apparent dissociation constants.Biophys. J. 25 541–8.

  45. VERGARA, J. & CAPUTO, C. (1983) Effects of tetracaine on charge movements and calcium signals in frog skeletal muscle fibers.Proc. natn. Acad. Sci. 80 1477–81.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rakowski, R.F., Best, P.M. & James-Kracke, M.R. Voltage dependence of membrane charge movement and calcium release in frog skeletal muscle fibres. J Muscle Res Cell Motil 6, 403–433 (1985). https://doi.org/10.1007/BF00712580

Download citation

Keywords

  • Sarcoplasmic Reticulum
  • Voltage Dependence
  • Tetrodotoxin
  • Tetraethylammonium
  • Charge Movement