Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A self-adaptive mesh refinement technique for boundary element solution of the Laplace equation.

  • 120 Accesses

  • 17 Citations


A self-adaptive mesh refinement technique is developed for boundary element solutions of the two-dimensional Laplace equation. The method is based on error reduction and applied on the element and global level to estimate the error associated with each mesh. This adaptive technique is then utilized to analyze problems with and without singularities. Results employing constant two-dimensional boundary elements are presented.

This is a preview of subscription content, log in to check access.


  1. Babuska, I.; Zienkiewicz, O. C.; Gago, J.; Oliveira, E. R. de A. (eds.) (1986): Accuracy estimates and adaptive refinements in finite element computations. Chichester: Wiley

  2. Babuska, I.; Chandra, J.; Flaherty, J. (eds.) (1983): Adaptive computational methods for partial differential equations. Proc. workshop held at the University of Maryland, College Park/MD, February 14–16

  3. Babuska, I.; Rheinboldt, W. (1979): Analysis of optimal finite element meshes in R1. Math. Comput. 33, 435–563

  4. Babuska, I; Rheinboldt, W. (1978): A posteriori erro estimates for the finite element method. Int. J. Numer. Methods Eng. 12, 1597–1615

  5. Babuska, I.; Rheinboldt, W.; Mesztenyi, C. (1975): Self-adaptive refinements in the finite element method. Techn. TR-375; Inst. f. Fluid Dynamics and Applied Mathematics, Univ. of Maryland, College Park/MD

  6. Banerjee, P. K.; Butterfield, R. (1981): Boundary element methods in engineering science, pp. 48–54. London: McGraw-Hill

  7. Brebbia, C. A. (ed.) (1981): Progress in boundary element methods, vol. 1, p. 297. New York: Wiley

  8. Brebbia, C. A. (1978): The boundary element method for engineers, p. 46 & 50. New York: Wiley

  9. Carey, G. F.; Oden, J. T. (1984): Finite element computational aspects, vol. III, pp. 23–129. Englewood Cliffs/NJ: Prentice-Hall

  10. Carey, G. F.; Humphrey, D. L. (1981): Mesh refinement and iterative solution methods for finite element computations. Int. J. Numer. Methods Eng. 17, 1717–1734

  11. Crouch, S. L.; Starfield, A. M. (1983): Boundary element methods in solid mechanics. p. 39 & 158. London: Allen & Unwin

  12. Ghia, K.; Ghia, U. (eds.) (1983): Advances in grid generation. ASME Mongraph FED-5

  13. Melosh, R. J.; Marcal, P. V. (1977): An energy basis for mesh refinement of structural continua. Int. J. Numer. Methods Eng. 11, 1083–1091

  14. Mullen, R. L.; Rencis, J. J. (1987): Iterative methods for solving boundary element equations. Comput. Struct. 25/5, 713–723

  15. Rencis, J. J.; Mullen, R. L. (1986): Solution of elasticity problems by a self-adaptive mesh refinement technique for boundary element computation. Int. J. Numer. Methods Eng. 23, 1509–1527

  16. Rencis, J. J.; Mullen, R. L. (1984): Self-adaptive mesh refinement for boundary element solutions of Laplace equation. Proc. 21st arm. Meet. Soc. of engineering science, Blacksburg/VA, October 15–17

  17. Schultz, D. H. (1975): Two test cases for numerical solution of harmonic mixed boundary value problems. J. Inst. Math. Its Appl. 15, 1–8

  18. Shephard, M.; Gallagher, R. eds., (1979): Finite element grid optimization. ASME Monograph PVP-38

  19. Turcke, D. J.; McNeice, G. M. (1974): Guidelines for selecting finite element grids based on an optimization study. Comput. Struct. 4, 499–519

Download references

Author information

Additional information

Communicated by S. N. AtLuri, June 5, 1987

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rencis, J.J., Mullen, R.L. A self-adaptive mesh refinement technique for boundary element solution of the Laplace equation.. Computational Mechanics 3, 309–319 (1988). https://doi.org/10.1007/BF00712145

Download citation


  • Information Theory
  • Boundary Element
  • Global Level
  • Element Solution
  • Laplace Equation