Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Rapid recovery of nicotinic receptor-mediated sodium-22 influx following withdrawal from acute or chronic cholinergic stimulation

Summary

  1. 1.

    Acetylcholine receptor-mediated uptake of22Na was studied in PC12 cells and 11-day chick muscle cells maintained in culture and exposed to carbamylcholine.

  2. 2.

    Carbamylcholine caused an initial 22-fold increase in the rate of22Na uptake but this fell to less than twice background after 4–10 min of continuous exposure. The decline reflects receptor desensitization.

  3. 3.

    The effects of acute (10-min) and chronic (10-day) exposure were compared in order to determine whether there was a down-regulation of acetylcholine receptors on chronic exposure to carbamylcholine. No down-regulation was observed on either PC12 or muscle cells.

  4. 4.

    The lack of down-regulation in these nicotinic systems contrasts with results on muscarinic systems and may reflect different roles for these receptor types.

This is a preview of subscription content, log in to check access.

References

  1. Brown, D. A., and Fumigalli, L. (1977). Alpha-bungarotoxin binding and receptor block in rat superior cervical ganglion.Brain Res. 129165–168.

  2. Burt, D. R., Creese, I., and Snyder, S. H. (1977). Antischizophrenic drugs. Chronic treatment elevates dopamine receptors binding in brain.Science 196624–625.

  3. Carbonetto, S. T., Fambrough, D. M., and Muller, K. I. (1978). Nonequivalence ofα-bungarotoxin receptors and acetylcholine receptors in chick sympathetic neurons.Proc. Natl. Acad. Sci. 751016–1020.

  4. Catterall, W. A. (1975). Sodium transport by the acetylcholine receptor of cultured muscle cells.J. Biol. Chem. 2501776–1781.

  5. Fischbach, G. D. (1972). Synapse formation between dissociated nerve and muscle cells in low density cultures.Dev. Biol. 28407–429.

  6. Galper, J. B., and Smith, T. W. (1980). Agonist and guanine nucleotide modulation of muscarinic cholinergic receptors in cultured heart cells.J. Biol. Chem. 2559571–9580.

  7. Gardner, J. M., and Fambrough, D. M. (1979). Acetylcholine receptor degradation measured by density labeling: Effects of cholinergic ligands and evidence againt recycling.Cell 16661–674.

  8. Greene, L. A., and Tischler, A. S. (1976). Establishment of a noradrenergic clonal line of rat adrenal pheochromacytoma cells which respond to nerve growth factor.Proc. Natl. Acad. Sci. 732424–2428.

  9. Katz, B., and Thesleff, S. (1957). The study of the “desensitization” produced by acetylcholine at the motor end-plate.J. Physiol. 13863–80.

  10. Klein, W. L., Nathanson, N. M., and Nirenberg, M. (1976). Long-term receptor mediated regulation of acetylcholine receptors and adenylate cyclase in hybrid cells.Fed. Proc. 351576.

  11. Klein, W. L., and Wolfe, M. (1982). Regulation of cell surface receptors. InMembrane Abnormalities and Disease (Tao, M., Ed.), CRC Press, Boca Raton, Fla., pp. 97–144.

  12. Klein, W. L., Nathanson, N. M., and Nirenberg, M. (1979), Muscarinic acetylcholine receptor regulation by accelerated rate of receptor loss.Biochem. Biophys. Res. Commun. 90506–521.

  13. Lefkowitz, R. J., Mullikin, D., and Williams, L. T. (1978). A desensitized state of the beta-adrenergic receptor not associated with high affinity agonist occupancy.Mol. Pharmacol. 14376–380.

  14. Magzanik, L. G., and Vyskocil, F. (1975). The effect of temperature on desensitization kinetics at the post-synaptic membrane of the frog muscle fiber.J. Physiol. 249285–300.

  15. Noble, M. D., Brown, G. H., and Peacock, J. H. (1978). Regulation of acetylcholine receptor levels by a cholinergic agonist in mouse muscle cell cultures.Proc. Natl. Acad. Sci. 753488–3492.

  16. Patrick, J., and Stallcup, B. (1977a). Alpha-bungarotoxin binding and cholinergic receptor function on a rat sympathetic nerve line.J. Biol. Chem. 2538629–8633.

  17. Patrick, J., and Stallcup, B. (1977b). Immunological distinction between acetylcholine receptor and the alpha-bungarotoxin binding component on sympathetic neurons.Proc. Natl. Acad. Sci. 744689–4692.

  18. Shifrin, G. S., and Klein, W. L. (1980). Regulation of muscarinic acetylcholine receptor concentration in cloned neuroblastoma cells.J. Neurochem. 34993–999.

  19. Siman, R. G., and Klein, W. L. (1979). Cholinergic activity regulates muscarinic receptors in central nervous system cultures.Proc. Natl. Acad. Sci. 764141–4145.

  20. Sporn, J. R., Harden, R. K., and Wolfe, B. B. (1976). Beta-adrenergic receptor involvement in 6-hydroxydopamine induced supersensitivity in rat cerebral cortex.Science 194624–625.

  21. U'Prichard, D. C., Bechtel, W. D., and Mason, S. T. (1979). Multiple apparent alpha-noradrenergic receptor binding sites in rat brain: Effect of 6-hydroxydopamine.Mol. Pharmacol. 1647–60.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Siman, R.G., Klein, W.L. Rapid recovery of nicotinic receptor-mediated sodium-22 influx following withdrawal from acute or chronic cholinergic stimulation. Cell Mol Neurobiol 2, 255–261 (1982). https://doi.org/10.1007/BF00711153

Download citation

Key words

  • nicotinic receptor
  • carbamylcholine
  • PC12 cells
  • sodium influx
  • cholinergic stimulation