Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The critical curve in an antiferromagnetic superconductor with nonmagnetic impurities

  • 17 Accesses

  • 6 Citations

Abstract

The critical curve of a transition of the second kind in an antiferromagnetic superconductor (AFS) with nonmagnetic impurities has been studied. The AFS is described by using the mean-field model given by Nass, Levin, and Grest and assuming a one-dimensional electron band. We find that the points on the critical curve satisfy the thermodynamic stability condition for 0≤α0≤5.04 and 0.49≤H0≤1.64.Here α1 is the inverse lifetime of a conduction electron for nonmagnetic impurity scattering,H Q is the antiferromagnetic molecular field, Δ0 is the zero-temperature order parameter of a superconductor in the absence ofH Q and impurities. Further, α and H denote the values of these quantities for points on the critical curve. For α0>5.04 and H0>1.64, the phase transition from the superconducting to the normal state is always of the second kind. Some thermal properties of the system near the critical curve have also been investigated and we find that these depends dramatically on the impurity concentration.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1.

    G. K. Shenoy, B. D. Dunlop, and F. Y. Fradin, eds.,Ternary Superconductors (North-Holland, Amsterdam, 1981).

  2. 2.

    Ø. Fischer and M. B. Maple, eds.,Superconductivity in Ternary Compounds I, II (Springer, Berlin, 1982).

  3. 3.

    K. Machida,Appl. Phys. A 35, 193 (1984).

  4. 4.

    K. N. Shrivastava and K. P. Sinha,Phys. Rep. 115, 93 (1984).

  5. 5.

    T. Matsubara and A. Kotani, eds.,Superconductivity in Magnetic and Exotic Materials (Springer, Berlin, 1984), pp. 104–134.

  6. 6.

    K. Levin, M. J. Nass, and C. Ro, inSuperconductivity in Magnetic and Exotic Materials, T. Matsubara and A. Kotani eds. (Springer, Berlin, 1984), pp. 104–111.

  7. 7.

    M. Ishikawa and Ø. Fischer,Solid State Commun. 24, 747 (1977).

  8. 8.

    W. A. Fertig, D. C. Johnston, L. E. DeLong, R. W. McCallum, M. B. Maple, and B. T. Matthias,Phys. Rev. Lett. 38, 987 (1977).

  9. 9.

    H. C. Ku, B. T. Matthias, and H. Bartz,Solid State Commun. 32, 937 (1978).

  10. 10.

    A. Thoma, H. Adrian, and A. Meinelt,J. Low Temp. Phys. 64, 329 (1986).

  11. 11.

    M. J. Nass, K. Levin, and G. S. Grest,Phys. Rev. Lett. 46, 614 (1981).

  12. 12.

    M. J. Nass, K. Levin, and G. S. Grest,Phys. Rev. B 25, 4541 (1982).

  13. 13.

    Y. Suzumura and A. D. S. Nagi,Phys. Rev. B 24, 5103 (1981).

  14. 14.

    Y. Suzumura and A. D. S. Nagi,J. Low Temp. Phys. 46, 397 (1982).

  15. 15.

    K. Ishino and Y. Suzumura,Prog. Theor. Phys. 68, 1009 (1982).

  16. 16.

    Y. Suzumura and K. Ishino,Solid State Commun. 45, 637 (1983).

  17. 17.

    Y. Suzumura and K. Ishino,Prog. Theor. Phys. 70, 654 (1983).

  18. 18.

    Y. Okabe and A. D. S. Nagi,Phys. Rev. B 28, 6290 (1983).

  19. 19.

    C. Ro and K. Levin,Phys. Rev. B 29, 6155 (1984).

  20. 20.

    Y. Suzumura, Y. Okabe, and K. Ishino,Prog. Theor. Phys. 74, 211 (1985).

  21. 21.

    M. Prohammer and E. Schachinger,Solid State Commun. 58, 649 (1986).

  22. 22.

    H. Chi and A. D. S. Nagi,Solid State Commun. 57, 491 (1986).

  23. 23.

    E. M. Lifshitz and L. P. Pitvaevskii,Statistical Physics, 3rd ed., Part 1 (Pergamon, Oxford, 1980), Chapter XIV.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chi, H., Nagi, A.D.S. The critical curve in an antiferromagnetic superconductor with nonmagnetic impurities. J Low Temp Phys 67, 475–492 (1987). https://doi.org/10.1007/BF00710355

Download citation

Keywords

  • Phase Transition
  • Stability Condition
  • Thermal Property
  • Magnetic Material
  • Conduction Electron