Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Complementary aspects of gravitation and electromagnetism

  • 59 Accesses

Abstract

A convention with regard to geometry, accepting nonholonomic aether motion and coordinate-dependent units, is always valid as an alternative to Einstein's convention. Choosing flat spacetime, Newtonian gravitation is extended, step by step, until equations closely analogous to those of Einstein's theory are obtained. The first step, demanded by considerations of inertia, is the introduction of a vector potential. Treating the electromagnetic and gravitational fields as real and imaginary components of a complex field (gravitational mass being treated as imaginary charge), the Maxwell stress-momentum-energy tensor for the complex field is then used as the source for both fields. The spherically symmetric solution of these unified field equations describes the electron. Third, effects arising from motion of aether fluid with respect to the artificial reference systems of flat spacetime are included. On the grounds that attraction between likes and repulsion between likes are, a priori, equally possible, it is suggested that gravitational and electromagnetic phenomena should enjoy equal status. This can be achieved on the scale of an infinite cosmos by introducing a hierarchy of isolated systems, each of which is a universe when viewed internally and an elementary particle when viewed externally. A universe (defined by the Hubble radius), an electron, and a neutrino are three consecutive isolated systems of the hierarchy. Implied is the existence of antiuniverses where gravitational mass has opposite sign and antimatter predominates. Remarkable relationships between physical constants emerge.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P. F. Browne,Found. Phys. 5, 387 (1975).

  2. 2.

    P. F. Browne,Found. Phys. 6, 457 (1976).

  3. 3.

    R. H. Dicke,Phys. Rev. 125, 2163 (1962).

  4. 4.

    J. A. Wheeler and R. P. Feynman,Rev. Mod. Phys. 21, 425 (1949).

  5. 5.

    P. F. Browne,Phys. Lett. 29A, 588 (1969).

  6. 6.

    D. W. Sciama,Mon. Not. Roy. Astr. Soc. 113, 34 (1953).

  7. 7.

    D. Lynden-Bell,Mon. Not. Roy. Astr. Soc. 135, 413 (1967).

  8. 8.

    F. Hoyle and J. V. Narlikar,Proc. Roy. Soc. A 282, 191 (1964).

  9. 9.

    L. Brillouin,Proc. Nat. Acad. Sci. U.S. 53, 475, 1280 (1965).

  10. 10.

    J. Hund,Z. Phys. 124, 724 (1948).

  11. 11.

    R. Arnowitt, S. Deser, and C. W. Misner,Phys. Rev. 120, 313 (1960).

  12. 12.

    R. d'E. Atkinson,Proc. Roy. Soc. A 272, 60 (1963).

  13. 13.

    F. H. J. Cornish,Proc. Roy. Soc. A 273, 413 (1963).

  14. 14.

    C. Møller,The Theory of Relativity (Oxford University Press, Oxford, 1972), pp. 474–479.

  15. 15.

    H. A. Wilson,Phys. Rev. 17, 54 (1921).

  16. 16.

    R. H. Dicke,Rev. Mod. Phys. 29, 363 (1957).

  17. 17.

    P. F. Browne,Nature 193, 1019 (1962).

  18. 18.

    R. C. Jaklevic, J. Lambe, A. H. Silver, and J. E. Mercereau,Phys. Rev. Lett. 12, 159 (1964).

  19. 19.

    Y. Aharanov and D. Bohm,Phys. Rev. 115, 485 (1959).

  20. 20.

    H. Erlichson,Am. J. Phys. 38, 162 (1970).

  21. 21.

    L. Motz,Phys. Rev. 126, 378 (1962).

  22. 22.

    T. A. Welton,Phys. Rev. 74, 1157 (1948).

  23. 23.

    E. A. Power,Am. J. Phys. 34, 516 (1966).

  24. 24.

    E. M. Kelly,Am. J. Phys. 31, 785 (1963).

  25. 25.

    G. Rosen,Can. J. Phys. 45, 2383 (1967).

  26. 26.

    P. Harris,Can. J. Phys. 47, 1884 (1969).

  27. 27.

    K. Johnson, M. Baker, and R. S. Willey,Phys. Rev. Lett. 11, 518 (1963).

  28. 28.

    Th. A. J. Maris, V. E. Herscovitz, and G. Jacob,Phys. Rev. Lett. 12, 313 (1964).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Browne, P.F. Complementary aspects of gravitation and electromagnetism. Found Phys 7, 165–183 (1977). https://doi.org/10.1007/BF00709005

Download citation

Keywords

  • Gravitational Field
  • Isolate System
  • Symmetric Solution
  • Equal Status
  • Physical Constant