Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Dead time correction of photon correlation functions

  • 167 Accesses

  • 23 Citations

Abstract

The dynamic range of single photon counting measurements in quasi elastic light scattering is restricted by detector and counter dead time effects. While distortions of single interval statistics have been treated at great length, only lowest order corrections or very special cases of dead time effects on temporal correlation functions were computed in the past.

Dead times result in a direct distortion of correlograms on time scales comparable to the dead time. This effect exists even at low count-rates. It is independent of the count rate for paralyzable systems. Nonparalyzable systems show a count rate dependence with increasing correlation times at high count rates.

Furthermore, counting saturation produces additional distortions extending to all lag times. These distortions are computed for the rather general case of Γ-distributed intensities with arbitrary shape of the photon correlation function. Such signals are commonly found in multiparticle homodyne experiments with a finite size detector, i.e. arbitrary value of the intercept or contrast of the correlogram. Exact results are provided for the paralyzable system including the effect of fluctuating dead times. The latter case is then used to compute a useful approximation for nonparalyzable systems as well.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    H.Z. Cummins, E.R. Pike (eds.):Photon Correlation and Light Beating Spectroscopy (Plenum, New York 1974)

  2. 2.

    H.Z. Cummins, E.R. Pike (eds.):Photon Correlation Spectroscopy and Velocimetry (Plenum, New York 1977)

  3. 3.

    E.O. Schulz-DuBois (ed.):Photon Correlation in Fluid Mechanics, Springer Ser. Opt. Sci.38, (Springer, Berlin, Heidelberg 1983)

  4. 4.

    An Introduction to the Photomultiplier, EMI Electronics Ltd.

  5. 5.

    I. DeLotto, P.F. Manfredi, P. Principio: Energia Nucl.11, 557 (1964)

  6. 6.

    F.A. Johnson, R. Jones, T.P. McLean, E.R. Pike: Phys. Rev. Lett.16, 589 (1966)

  7. 7.

    G. Bédard: Proc. Phys. Soc. (London)90, 131 (1967)

  8. 8.

    R.F. Chang, V. Korenman, C.O. Alley, R.W. Detenbeck: Phys. Rev.178, 612 (1969)

  9. 9.

    A. Kikkawa, K. Ohkubo, H. Sato, N. Suzuki: Opt. Commun.12, 227 (1974)

  10. 10.

    E.E. Serralach, M. Zulauf: J. Appl. Math. Phys. (ZAMP)26, 669 (1975)

  11. 11.

    M.C. Teich, W.J. McGill: Phys. Rev. Lett.36, 754 (1976)

  12. 12.

    S.K. Srinivasan: Phys. Lett.50A, 277 (1974), J. Phys. A (Math. Gen.)11, 2333 (1978)

  13. 13.

    B.I. Cantor, L. Matin, M.C. Teich: Appl. Opt.14, 2819 (1975)

  14. 14.

    G. Vannucci, M.C. Teich: Opt. Commun.25, 267 (1978), J. Opt. Soc. Am.71, 164 (1981)

  15. 15.

    M.C. Teich, G. Vannucci: J. Opt. Soc. Am.68, 1338 (1978)

  16. 16.

    L. Mandel: J. Opt. Soc. Am.70, 873 (1979)

  17. 17.

    B. Saleh:Photoelectron Statistics Springer Ser. Opt. Sci.6 (Springer, Berlin, Heidelberg, New York 1978)

  18. 18.

    A.S. Arutyunov: Opt. Spectrosc. (USSR)53, 179 (1982)

  19. 19.

    E. Jakeman, C.J. Oliver, E.R. Pike: J. Phys. A4, 827 (1971)

  20. 20.

    S.K. Srinivasan, M. Singh: Phys. Lett.8, 409 (1981)

  21. 21.

    F.T. Arecchi, M. Corti, V. Degiorgio, S. Donati: Opt. Commun.3, 284 (1971)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schätzel, K. Dead time correction of photon correlation functions. Appl. Phys. B 41, 95–102 (1986). https://doi.org/10.1007/BF00702660

Download citation

PACS

  • 07.65.Eh
  • 82.80.Di
  • 85.10.Pe