Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Trans-equatorial connections between biotas in the temperate eastern Atlantic

  • 77 Accesses

  • 34 Citations


Several marine genera and species occur in the shallow-water temperate biotas of Europe and southern Africa, but not in tropical West Africa. Studies of the fossil record show that these trans-equatorial distributions were achieved before the Late Pliocene rather than during glacial episodes of the Pleistocene. Species of North Pacific origin entered the northeastern Atlantic at the beginning of Middle Pliocene time, and many penetrated to warm-temperate coasts of the Mediterranean and northwestern Africa. The fact that no Pacific-derived shallow-water molluscs and only one Pacific-derived algal genus (Laminaria) reached southern Africa without human agency suggests that trans-equatorial interchange was infrequent after the opening of Bering Strait during the Middle Pliocene, about 3.5 million years ago. The West African tropical zone must have remained wide enough or warm enough from the Late Pliocene onward to have acted as an effective barrier in which temperate species were unable to survive even during glacial times.

This is a preview of subscription content, log in to check access.

Literature cited

  1. Berggren, W. A., Hollister, C. D. (1977). Plate tectonics and paleocirculation —a commotion in the ocean. Tectonophysics 38: 11–48

  2. Beu, A. G. (1976). Arrival ofSemicassis pyrum (Lamarck) and other tonnacean gastropods in the Southern Ocean during Pleistocene time. Jl R. Soc. N.Z. 6: 413–432

  3. Beu, A. G., Maxwell, P. A. (1990). Cenozoic Mollusca of New Zealand. Paleont. Bull., Wellington 58: 1–518 (N.Z. geol. Surv.)

  4. Blot, M., Thiriot-Quievreux, C., Soyer, J. (1988). Genetic relationships among populations ofMytilus desolationis from Kerguelen,M. edulis from the North Atlantic andM. galloprovincialis from the Mediterranean. Mar. Ecol. Prog. Ser. 44: 230–247

  5. Cosel, R. von (1989). Taxonomy of tropical West African bivalves II. Psammobiidae. Bull. Mus. natn. Hist. nat., Paris [Sect. A (4)] 1: 693–731

  6. Estes, J. A., Steinberg, P. D. (1988). Predation, herbivory, and kelp evolution. Paleobiology 14: 19–36

  7. Gladenkov, Yu. B., Norton, P., Spaink, G. (1980). Verkhnii Kainozoi islandii. Trudy geol. Inst., Leningr. 345: 1–114

  8. Glynn, P. W., Druffel, E. M., Dunbar, R. B. (1983). A dead Central American coral reef tract: possible link with the Little Ice Age. J. mar. Res. 41: 605–637

  9. Gosliner, T. M. (1987). Biogeography of the opisthobranch fauna of southern Africa. Am. malac. Bull. 5: 243–258

  10. Grant, W. S., Cherry, M. I. (1985).Mytilus galloprovincialis Lmk. in southern Africa. J. exp. mar. Biol. Ecol. 90: 179–191

  11. Hendey, Q. B. (1981). Palaeoecology of the Late Tertiary fossil occurrences in “E” quarry, Langebaanweg, South Africa, and a reinterpretation of their geological context. Ann. S. Afr. Mus. 84: 1–104

  12. Herbert, D. G., Kilburn, R. N. (1986). Taxonomic studies on the Emarginulinae (Mollusca: Gastropoda: Fissurellidae) of southern Africa and Mozambique.Emarginula, Emarginella, Puncturella, Fissurisepta, andRimula. S. Afr. J. Zool. 21: 1–27

  13. Hinsch, W. (1977). Die Molluskenfauna des Syltium von Morsum-Kliff. Schr. naturwiss. Ver. Schlesw.-Holst. 47: 39–56

  14. Holthuis, L. B. (1974). The lobsters of the superfamily Nephropidea of the Atlantic Ocean (Crustacea: Decapoda). Bull. mar. Sci. 24: 723–784

  15. Hubbs, C. L. (1952). Antitropical distribution of fishes and other organisms. Proc. 7th Pacif. Sci. Congr. 3: 324–329

  16. Janssen, A. W., Peeters, G. A., van der Slik, L. (1984). De fossiele schelpen van de Nederlandse stranden en zeegaten, tweede serie. VIII. Basteria 48: 91–219

  17. Janssen, R. (1979a). Revision der Bivalvia des Oberoligozäns (Chattium, Kasseler Meeressand). Abh. hess. geol. Landesanst. 78: 1–181

  18. Janssen, R. (1979b). Die Mollusken des Oberoligozäns (Chattium) im Nordseebecken. 2. Neogastropoda, Euthyneura, Cephalopoda. Arch. Molluskenk. 109: 277–376

  19. Kafanov, A. I. (1987). Podsemeistvo Mytilinae Rafinesoue 1815 (Bivalvia, Mytilidae) v Kainozoe severnoi Patsifiki. In: Fauna i raspredelenie mollyuskov: severanya patsifika i polarnui bassein. Akademiva Nauk SSSR, Vladivostok

  20. Kain, J. M. (1979). A view of the genusLaminaria. Oceanogr. mar. Biol. A. Rev. 17: 101–161

  21. Kaneps, A. G. (1979). Gulf Stream: velocity fluctuation during the late Cenozoic. Science, N.Y. 204: 297–301

  22. Kensley, B., Pether, J. (1986). Late Tertiary and Early Quaternary fossil Mollusca of the Hondeklip area, Cape Province, South Africa. Ann. S. Afr. Mus 97: 141–225

  23. Knight, A. J., Hughes, R. N., Ward, R. D. (1987). A striking example of the founder effect in the molluscLittorina saxatilis. Biol. J. Linn. Soc. 32: 417–426

  24. Lindberg, D. R. (1991). Marine biotic interchange between the northern and southern hemispheres. Paleobiology 17: 308–324

  25. malatesta, A., Zarlenga, F. (1986). Northern guests in the Pleistocene Mediterranean Sea. Geologica rom. 25: 91–154

  26. Marincovich, L. Jr., Brouwers, E. M., Hopkins, D. M., McKenna, M. C. (1990). Late Mesozoic and Cenozoic paleogeographic and paleoclimatic history of the Arctic Ocean basin, based on shallow-water marine faunas and terrestrial vertebrates. In: Grantz, A., Johnson, L., Sweeney, J. F. (eds.) The Arctic Ocean region. Geological Society of America, Boulder, Colorado

  27. McDonald, J. H., Koehn, R. K. (1988). The musselsMytilus galloprovincialis andM. trossulus on the Pacific coast of North America. Mar. Biol. 99: 111–118

  28. Muizon, C. de (1982). Phocid phylogeny and dispersal. Ann. S. Afr. Mus. 89: 175–213

  29. Olson, S. L. (1984). Fossil seabirds and changing marine environments in the Late Tertiary of South Africa. S. Afr. J. Sci. 79: 399–402

  30. Reid, D. G. (1990). Trans-Arctic migration and speciation induced by climatic change: the biogeography ofLittorina (Mollusca: Gastropoda). Bull. mar. Sci. 39: 35–49

  31. Santelices, B. (1980). Phytogeographic characterization of the temperate coast of Pacific South America. Phycologia 19: 1–12

  32. Talavera, F. G., Kardas, S. J. Jr., Richards, H. J. (1978). Quaternary marine mollusks from Tenerife, Canary Islands. Nautilus 92: 97–102

  33. Varvio, S.-L., Kohen, R. K., Väinölä, R. (1988). Evolutionary genetics of theMytilus edulis complex in the North Atlantic region. Mar. Biol. 98: 51–60

  34. Vermeij, G. J. (1986). Survival during biotic crises: the properties and evolutionary significance of refuges. In: Elliott, D. K. (ed.) Dynamics of extinction. Wiley, New York, p. 231–246

  35. Vermeij, G. J. (1991). Anatomy of an invasion: the trans-Arctic interchange. Paleobiology 17: 281–307

  36. Waller, T. R. (1991). Evolutionary relationships among commercial scallops (Mollusca: Bivalvia: Pectinidae). In: Shumway, S. E. (ed.) Scallops—biology, ecology and aquaculture. Elsevier, Amsterdam

  37. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. biol. Chem. 193: 265–275

  38. Makary, M., Kim, H.L., Safe, S., Womack, J., Ivie, G.W. (1988). Constitutive and Aroclor 1254-induced hepatic glutathioncS-transferase, peroxidase and reductase activities in genetically inbred mice. Comp. Biochem. Physiol. 91C: 425–429

  39. Malik, Z., Jones, C.J.P., Connock, M.J. (1987). Assay and subcellular localization of H2O2 generating mannitol oxidase in the terrestrial slugArion ater. J. exp. Zool. 242: 9–15

  40. Mann, V., Large, A., Khan, S., Malik, Z., Connock, MJ. (1989) Aromatic alcohol oxidase: a new membrane-bound H2O2-generating enzyme in alimentary tissues of the slugArion ater. J. exp. Zool. 251: 265–274

  41. Marx, J.L. (1987). Oxygen free radicals linked to many diseases. Science, N.Y. 235: 529–531

  42. McCord, J.M., Fridovich, I. (1969). Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J. biol. Chem. 244: 6049–6055

  43. Michiels, C., Remacle, J. (1988). Use of the inhibition of enzymatic antioxidant systems in order to evaluate their physiological importance. Eur. J. Biochem. 177: 435–441

  44. Morrill, A.C., Powell, E.N., Bidigare, R.R., Shick, J.M. (1988). Adaptations to life in the sulfide system: a comparison of oxygen detoxifying enzymes in thiobiotic and oxybiotic meiofauna (and freshwater planarians). J. comp. Physiol. (Sect. B) 158: 335–344

  45. Munday, R., Winterbourn, C.C. (1989). Reduced glutathione in combination with superoxide dismutase as an important biological antioxidant defence mechanism. Biochem. Pharmac. 38: 4349–4352

  46. Owen, G. (1972). Lysosomes, peroxisomes and bivalves. Scient. Prog. Oxf. 60: 299–318

  47. Paglia, D.E., Valentine, W.N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. clin. Med. 70: 158–169

  48. Pelletier, E. (1988). Acute toxicity of some methylmercury comples toMytilus edulis and lack of selenium protection. Mar. Pollut. Bull. 19: 213–219

  49. Powell, E.N., Morrill, A.C., Bidigaire, R.R. (1989). Catalase in sulfide- and methane-dependent macrofauna from petroleum seeps. Experientia 45: 198–200

  50. Pritsos, C.A., Ahmad, S., Elliott, A.J., Pardini, R.S. (1990). Antioxidant enzyme level response to prooxidant allelochemicals in larvae of the southern armyworm moth,Spodoptera eridania. Free radical Res. Commun. 9: 127–133

  51. Putter, J. (1984). Peroxidases. In: Bergmeyer, H.U. (ed.) Methods of enzymatic analysis. Vol. 2. Academic Press, New York, p. 685–690

  52. Roberts, M.H., Sved D.W., Felton, S.P. (1987). Temporal changes in AHH and SOD activities in feral spot from the Elizabeth river, a polluted sub-estuary. Mar. envirl Res. 23: 89–101

  53. Roels, F., Geerts, A., De Coster, W., Goldfischer, S. (1982). Cytoplasmic catalase: cytochemistry and physiology. Ann. N.Y. Acad. Sci. 386: 534–536

  54. Salin, M.L., Day, E.D., Crapo, J.D. (1978). Isolation and charactezation of a manganese-containing superoxide dismutase from rat liver. Archs Biochem. Biophys. 187: 223–228

  55. Sanchez-Moreno, M., Garcia-Ruiz, M.A., Monteolivia, M. (1989). Physico-chemical characteristics of superoxide dismutase inAscaris suum. Comp. Biochem. Physiol. 92B: 737–740

  56. Shick, J.M., Dykens, J.A. (1985). Oxygen detoxification in algal-invertebrate symbioses from the Great Barrier Reef. Oecologia 66: 33–41

  57. Simmons, T.W., Jamall, I.S. (1988). Significance of alterations in hepatic antioxidant enzymes. Biochem. J. 251: 913–917

  58. Smith, J., Shrift, A. (1979). Phylogenetic distribution of glutathione peroxidase. Comp. Biochem. Physiol. 63B: 39–44

  59. Steinman, H.M. (1982). Superoxide dismutases: protein chemistry and structure-function relationships. In: Oberley, L.W. (ed.) Superoxide dismutase. Vol I. CRC Press Inc., Boca Raton, Florida, p. 11–68

  60. Susani, M., Zimniak, P., Fessl, F., Ruis, H. (1976). Localization of catalase A in vacuoles ofSaccharomyces cerevisiae: evidence for the vacuolar nature of isolated “yeast peroxisomes”. Hoppe-Seyler's Z. physiol. Chem. 357: 961–970

  61. Takahashi, K., Avissar, N., Whitin, J., Cohen, H. (1987). Purification and characterization of human plasma glutathione peroxidase: a selenoglycoprotein distinct from the known cellular enzyme. Archs Biochem. Biophys. 256: 677–686

  62. Tappel, M.E., Chaudiere, J, Tappel., A.L. (1982). Glutathione peroxidase activities of animal tissues. Comp. Biochem. Physiol. 73B: 945–949

  63. Tribble, D.L., Jones, D.P. (1990). Oxygen depedence of oxidative stress. Rate of NADPH supply for maintaining the GSH pool during hypoxia. Biochem. Pharmac. 39: 729–736

  64. Turner, E., Hager, L.J., Shapiro, B.M. (1988). Ovothiol replaces glutathione peroxidase as a hydrogen peroxide scavenger in sea urchin eggs. Science, N.Y. 242: 939–941

  65. Ursini, F., Bindoli, A. (1987). The role of selenium peroxidases in the protection against oxidative damage of membranes. Chemy Phys. Lipids 44: 255–276

  66. Vandewalle, P.L., Petersen, N.O. (1987). Oxidation of reduced cytochromec by hydrogen peroxide. Implications for superoxide assays. Fedn eur. biochem. Soc. (FEBS) Lett. 210: 195–198

  67. Vuillaume, M. (1987). Reduced oxygen species, mutation, induction and cancer initiation. Mutation Res. 186: 43–72

  68. Wenning R.J.. Di Giulio, R.T. (1988). Microsomal enzyme activities, superoxide production, and antioxidant defenses in ribbed mussels (Geukensia demissa) and wedge clams (Rangia cuneata). Comp. Biochem. Physiol. 90C: 21–28

  69. Winston, G.W. (1991). Oxidants and antioxidants in aquatic animals. Comp. Biochem. Physiol. 100C: 173–176

  70. Winston, G.W., Di Giulio, R.T. (1991). Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxic. 19: 137–161

  71. Winston, G.W., Livingstone, D.R., Lips, F. (1990). Oxygen reduction metabolism by the digestive gland of the common marine mussel,Mytilus edulis L. J. exp. Zool. 255: 296–308

  72. Yokota, S. (1970). Comparative studies on the ultrastructure of hepatic microbodies. I. Hepatopancreatic microbodies of the marine Mollusca and Crustacea. Zool. Mag., Tokyo 79: 296–301

Download references

Author information

Additional information

Communicated by M. G. Hadfield, Honolulu

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vermeij, G.J. Trans-equatorial connections between biotas in the temperate eastern Atlantic. Mar. Biol. 112, 343–348 (1992). https://doi.org/10.1007/BF00702481

Download citation


  • Europe
  • Pleistocene
  • Pliocene
  • Fossil Record
  • Human Agency