Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of an increase in the nitrogen content of the working gas on the microstructure of reactive sputtered TiN thin films

Abstract

TiN films were deposited on (100)-Si substrates by RF-reactive sputtering. The effects of processing parameters and substrate orientation on the stoichiometry, resistivity and microstructure of reactively sputtered TiN thin films were investigated. The RF-power was fixed at 50 W, and the nitrogen content in the working gas was adjusted so that target nitridation occurred at a relatively low nitrogen content, 2.6% N2, in a fixed total flow rate of gases of 46.25 standard cubic centimetres (sccm). The N2 percentage was varied from 2.6% to 15.4%. The films were continuous and ∼200 nm thick. Films deposited with the substrate facing the target exhibited 111-texturing, while films on substrates lying in the same plane of the target surface had 100-texturing. Both X-rays photoelectron spectroscopy and high-resolution detailed scans of the Auger electron energy spectrum were used for the stoichiometry determination. On the 100-textured TiN films, the N/Ti ratio was ∼1.0 at low N2 flow rates; the N/Ti ratio rapidly increased with N2 flow rate, and then levelled off. The films had resistivities ranging from 85 to 1340 µΩ cm, and the functional dependence of both N/Ti and the resistivity values behaved similarly with increasing N2. X-ray single-line profile analysis of the 200-reflection indicated that the average crystallite size decreased and the average strain increased with increasing nitrogen content in the working gas. The Si/TiN structures were heat treated in the temperature range from 300 to 600°C in a quartz tube under 1 atm (∼105Pa) of flowing high purity Ar gas. Heat treatment at 300°C did not affect the TiN film integrity, while treatment at 400–600°C resulted in void-type defects.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. J. PERRY,Thin Solid Films 170 (1989) 63.

  2. 2.

    A. J. PERRY, M. JAGNER, W. D. SPROUL and P. J. RUDNIK, “The residual stress in TiN films deposited onto cemented carbide by high-rate reactive sputtering”, Paper presented in the International Conference on Metallurgical Coatings, American Vacuum Society — Vacuum Metallurgy Division, San Diego, CA, April, 1989.

  3. 3.

    D. S. RICKERBY and R. B. NEWBERY,Vacuum 38 (1988) 161.

  4. 4.

    A. J. PERRY and L. CHOLLET,J. Vac. Sci. Technol. A4 (1986) 2801.

  5. 5.

    V. VALVODA, R. KUZEL, Jr, R. CERNY and L. DOBIASOVA,Mater. Sci. Engng A104 (1988) 223.

  6. 6.

    V. VALVODA, R. CERNY, R. KUZEL, Jr, J. MUSIL and V. POULEK,Thin Solid Films 158 (1988) 225.

  7. 7.

    V. VALVODA, R. KUZEL, Jr, R. CERNY and J. MUSIL, ibid.156 (1988) 53.

  8. 8.

    H. FRELLER and H. P. LORENZ,J. Vac. Sci. Technol. A4 (1986) 2691.

  9. 9.

    A. KOHLHASE, M. MANDL and W. PALMER,J. Appl. Phys. 65 (1989) 2464.

  10. 10.

    J. I. LANGFORD,J. Appl. Crystallogr. 11 (1978) 10.

  11. 11.

    Th. H. DE KEIJSER, J. I. LANGFORD, E. J. MITTEMEIJER and A. B. P. VOGELS, ibid.15 (1982) 308.

  12. 12.

    A. J. PERRY, C. STRANDBERG, W. D. SPROUL, S. HOFMANN, C. ERNSBERGER, J. NICKERSON and L. CHOLLET, in “The chemical analysis of TiN films: a round robin experiment”,Thin Solid Films 153 (1987) 169.

  13. 13.

    L. E. DAVIS, N. C. MCDONALD, P. W. PALMBERG, G. E. RIACH and R. E. WEBER, in “Handbook of Auger electron spectroscopy’, 2nd edition (Physical Electronics Industries, Inc., MN, USA, 1976).

  14. 14.

    B. J. BURROW, A. E. MORGAN and R. C. ELLWANGER,J. Vac. Sci. Technol. A4 (1986) 2463.

  15. 15.

    C. D. WAGNER, W. M. RIGGS, L. E. DAVIS, J. F. MOULDER and G. E. MUILENBERG, in “Handbook of X-ray photoelectron spectroscopy”, (Physical Electronics Industries, Inc., MN, USA, 1978).

  16. 16.

    M. WITTMER, Private Communication.

  17. 17.

    N. CIRCELLI and J. HEMS,Solid State Technol. February (1988) 75.

  18. 18.

    W. SINKE, G. P. A. FRIJLINK and F. W. SARIS,Appl. Phys. Lett. 47 (1985) 471.

  19. 19.

    H. VON SEEFELD, N. W. CHEUNG, M. MAENPAA and M.-A. NICOLET,IEEE Trans. Electron. Dev. ED27 (1980) 873.

  20. 20.

    R. C. ELLWANGER and J. M. TOWNER,Thin Solid Films 161 (1988) 289.

  21. 21.

    J.-E. SUNDGREN, B.-O. JOHANSSON, S.-E. KARLSSON and H. T. G. HENTZELL, ibid.105 (1983) 367.

  22. 22.

    N. KUMAR, K. POURREZAEI, M. FISSEL, T. BEGLEY, B. LEE and E. C. DOUGLAS,J. Vac. Sci. Technol. A5 (1987) 1778.

  23. 23.

    G. LEMPERIERE and J. M. POITEVIN,Thin Solid Films 111 (1984) 339.

  24. 24.

    Y. IGASAKI and H. MITSUHASHI, ibid.70 (1980) 17.

  25. 25.

    S. KANAMORI, ibid.136 (1986) 195.

  26. 26.

    R. R. MANORY and G. KIMMEL, ibid.150 (1987) 277.

  27. 27.

    T. P. THORPE, S. B. QADRI, S. A. WOLF and J. H. CLAASSEN,Appl. Phys. Lett. 49 (1986) 1239.

  28. 28.

    U. HELMERSSON, J.-E. SUNDGREN and J. E. GREEN,J. Vac. Sci. Technol. A4 (1986) 500.

  29. 29.

    N. SAVVIDES and B. WINDOW,J. Appl. Phys. 64 (1988) 225.

  30. 30.

    W. POSADOWSKI and L. K.-STEPNIEWSKA,Thin Solid Films 62 (1979) 347.

  31. 31.

    A. ROUSSEAU and J. GUILLE,Vacuum 38 (1988) 443.

  32. 32.

    J. M. POITEVIN, G. LEMPERIERE and J. TARDY,Thin Solid Films 97 (1982) 69.

  33. 33.

    N. KUMAR, K. POURREZAEI, B. LEE and E. C. DOUGLAS, ibid.164 (1988) 417.

  34. 34.

    K. KAWABATA,Electrocomponent Sci. Technol. 8 (1981) 249.

  35. 35.

    Y. IGASAKI, H. MITSUHASHI, K. AZUMA and T. MUTO,Jpn. J. Appl. Phys. 17 (1978) 85.

  36. 36.

    K. HOFFMAN, G. W. RUBLOFF and R. C. MCCORKLE,Appl. Phys. Lett. 49 (1986) 1525.

  37. 37.

    H. R. SHANKS and L. LEY,J. Appl. Phys. 52 (1981) 811.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hyatt, S.O., Chao, B.S. & Yamauchi, H. Effect of an increase in the nitrogen content of the working gas on the microstructure of reactive sputtered TiN thin films. J Mater Sci: Mater Electron 3, 41–47 (1992). https://doi.org/10.1007/BF00701093

Download citation

Keywords

  • Nitrogen Content
  • Electron Energy Spectrum
  • Increase Nitrogen Content
  • Detailed Scan
  • Film Integrity