Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ontogenetic change in the diet ofAplodactylus punctatus (Pisces: Aplodactylidae): an ecophysiological explanation

  • 82 Accesses

  • 20 Citations

Abstract

Aplodactylus punctatus is a temperate berbivorous fish that changes from an omnivorous to a herbivorous diet and increases its ability ot assimilate algae as it grows. To investigate whether this dietary shift is related to size-specific differences in energetic demands imposed by metabolism and the amount of assimilated energy, oxygen consumption (\(V_{O_2 }\)) was determined experimentally in 12 specimens ranging in size from 62 to 545 g.\(V_{O_2 }\) increased allometrically with body size from 8.41 to 55.95 mg O2 individual-1 h-1. Individual energetic requirements were 2.8 to 33.7 kJ d-1. The assimilated energy was estimated, taking into consideration: (1) the energetic value of the most important alga in the diet (Lessonia trabeculata); (2) size-specific differences in assimilation rates for fish fed on this alga; (3) size-specific differences in throughput time and in the amount of food in a full gut. Comparison of the energy required and the assimilated energy revealed that fishes of < 22 to 29 cm total length had a negative energetic balance when consuming algae exclusively. This may explain the reliance of smallA. punctatus on more easily-digested invertebrates. The largest individuals can meet their energetic demands by consuming algae alone, apparently because of their higher assimilation capability. InA. punctatus, changing energetic requirements and capacities for algal assimilation may be responsible for the observed ontogenetic change in diet.

This is a preview of subscription content, log in to check access.

References

  1. Bell, J. D., Burchmore, J. J., Pollard, D. A. (1980). The food and feeding habits of the rock blackfishGirella elevata Macleay (Pisces: Girellidae), from the Sydney region, New South Wales. Aust. Zool. 20: 391–405

  2. Benavides, A. G. (1990). Variación ontogenética de la capacidad para asimilar algas deAplodactylus punctatus (Pisces: Aplodactylidae). M. Sc. thesis. Universidad de Chile, Santiago, Chile

  3. Benavides, A. G., Bozinovic, F., Cancino, J. M., Yates, L. (1986). Asimilación de algas por dos peces del litoral chileno:Syciases sanguineus (Gobiesocidae)y Aplodactylus punctatus (Aplodactylidae). Medio ambiente 8: 21–26

  4. Benavides, A. G., Cancino, J. M., Ojeda, F. P. (1994). Ontogenetic changes in gut dimensions and macroalgal digestibility in the marine herbivorous fish,Aplodactylus punctatus. Funct. Ecol. (in press)

  5. Brett, J. R., Groves, T. D. (1979). Physiological energetics. In: Hoar, W. S., Randall, D. J., Brett, J. R. (eds.) Fish physiology. Vol. VIII. Bioenergetics and growth. Academic Press Inc., New York, p. 252–279

  6. Brey, T., Rumhor, H., Ankar, S. (1988). Energy content of macrobenthic invertebrates: general conversion factors from weight to energy. J. exp. mar. Biol. Ecol 117: 271–278

  7. Chirichigno, N. (1974). Clave para identificar los peces marinos del Perú. Instituto del Mar del Perú, Callao, Perú (Informe No. 4)

  8. Demment, M. W., Van Soest, P. J. (1985). A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am. Nat. 125: 641–672

  9. Edwards, R. R. C., Blaxter, J. H. S., Gopalan, U. K., Mathew, C. V., Finlayson, D. M. (1971). Feeding, metabolism and growth of tropical flatfish. J. exp. mar. Biol. Ecol. 6: 279–300

  10. Edwards, R. R. C., Finlayson, V., Steele, J. H. (1969). The ecology of o-group plaice and common dabs in Lockewe. II. Experimental studies of metabolism. J. exp. mar. Biol. Ecol. 3: 1–17

  11. Edwards, R. R. C., Finlayson, V., Steele, J. H. (1972). An experimental study of the oxygen consumption, growth and metabolism of the cod (Gadus morua L.). J. exp. mar. Biol. Ecol. 8: 294–309

  12. Edwards, T. W., Horn, M. H. (1982). Assimilation efficiency of a temperate-zone intertidal fish (Cebidichthys violaceus) feds diets of macroalgae. Mar. Biol. 67: 247–253

  13. Elliott, J. M. (1976a). Energy losses in waste products of brown trout (Salmo trutta L.). J. Anim. Ecol. 45: 561–580

  14. Elliott, J. M. (1976b). The energetics of feeding, metabolism and growth in trout (Salmo trutta) in relation to body weight, water temperature and ration size. J. Anim. Ecol. 45: 923–948

  15. Fuentes, E. R., di Castri, F. (1975). Ensayo de herbivoría experimental en especies deLiolaemus (Iguanidae) chilenos. An. Mus. Hist. nat. Valparaíso 8: 66–75

  16. Hoffer, R. (1988). Morphological adaptations of the digestive tract of tropical cyprinids and cichlids to diet. J. Fish Biol. 33: 299–408

  17. Hoffer, R., Kreedl, G., Koch, F. (1985). An energy budget for an omnivorous cyprinidRutilus rutilus (L.). Hydrobiologia 122: 53–59

  18. Hoffer, R., Newrkla, P. (1983). Determination of gut passage time in tilapia-fry (Oreochromis mossambicus) under laboratory and field conditions. In: Fishelson, L., Yaron, Z. (eds.) Proceedings on International Symposium on Tilapia in Aquaculture. Tel Aviv University, Tel Aviv, Israel, p. 323–327

  19. Horn, M. H. (1989). Biology of marine herbivorous fishes. Oceanogr. mar. Biol. A. Rev. 27: 167–272

  20. Jaksic, F. (1978). A que tamaño se hace herbívora una lagartija. An. Mus. Hist. nat. Valparaíso 11: 113–116

  21. Kleiber, M. (1961). The fire of life: an introduction to animal energetics. Wiley, New York

  22. Mattson, W. J. (1980). Herbivory in relation to plant nitrogen content. A. Rev. Ecol. Syst. 11: 119–161

  23. Miranda, O. (1973). Calendario ictiológico de San Antonio. 3. Biología de la Jerguilla (Aplodactylus punctatus). Biología pesq. Chile 6: 25–43

  24. Mitchell, D. F. (1953). An analysis of stomach contents of California tide pool fishes. Am. Midl. Nat. 49: 862–871

  25. Montgomery, W. L. (1977). Diet and gut morphology in fishes, with special reference to the monkeyface prickleback (Cebidichthys violaceus) (Stichaeidae: Blennioidei). Copeia 1977: 178–182

  26. Montgomery, W. L., Gerking, S. D. (1980). Marine macroalgae as foods for fishes: an evaluation of potential food quality. Envir. Biol. Fish. 5: 143–153

  27. Pandian, T. J., Marian, M. P. (1985). Nitrogen content of food as index of absorption efficiency in fishes. Mar. Biol. 85: 301–311

  28. Paul, A. J., Paul, J. M., Smith, R. L. (1988). Respiratory energy requirements of the codGadus macrocephalus Tilesius relative to body size, food intake and temperature. J. exp. mar. Biol. Ecol. 122: 83–89

  29. Philipson, J. (1981). Bioenergetics options and phylogeny. In: Townsend, C. R., Calow, P. (eds.) Physiological ecology: an evolutionary approach to resource use. Blackwell Scientific Publications, London, p. 20–45

  30. Pough, F. H. (1973). Lizard energetics and diet. Ecology 54: 837–844

  31. Rimmer, D. W. (1986). Changes in diet and the development of microbial digestion in juvenile buffalo bream,Kyphosus cornelii. Mar. Biol. 92: 443–448

  32. Rios, C. F. (1979). Balance energético en poblaciones deGalaxias maculatus (Jenyns) (Salmoniformes: Galaxidae). Medio ambiente 4: 24–39

  33. Sibly, R. M. (1981). Strategies of digestion and defecation. In: Townsend, C. R., Calow, P. (eds.) Physiological ecology: an evolutionary approach to resource use. Blackwell Scientific Publications, London, p. 109–139

  34. Welch, H. E. (1968). Relationship between assimilation efficiencies and growth efficiencies for a aquatic consumers. Ecology 46: 755–759

Download references

Author information

Correspondence to F. P. Ojeda.

Additional information

Communicated by M. G. Hadfield, Honolulu

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Benavides, A.G., Cancino, J.M. & Ojeda, F.P. Ontogenetic change in the diet ofAplodactylus punctatus (Pisces: Aplodactylidae): an ecophysiological explanation. Mar. Biol. 118, 1–5 (1994). https://doi.org/10.1007/BF00699213

Download citation

Keywords

  • Assimilation
  • Assimilation Rate
  • Ontogenetic Change
  • Dietary Shift
  • Energetic Demand