Probability Theory and Related Fields

, Volume 74, Issue 3, pp 393–402 | Cite as

On the Markov property for certain Gaussian random fields

  • Torbjörn Kolsrud


Hilbert Space Markov Property Dirichlet Form Dirichlet Space Gaussian Random Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atkinson, B.: On Dynkin's Markov property of random fields associated with symmetric Markov processes. Stoch. Proc. Appl.15, 193–201 (1983)zbMATHCrossRefGoogle Scholar
  2. 2.
    Dynkin, E.B.: Markov processes and random fields. Bull. Am. Math. Soc.3(3), 975–999 (1980)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Fukushima, M.: Dirichlet forms and Markov processes. Amsterdam-Oxford-New York: North Holland; Tokyo: Kodansha 1980zbMATHGoogle Scholar
  4. 4.
    Hedberg, L.I.: Spectral synthesis in Sobolev spaces, and uniqueness of solutions to the Dirichlet problem. Acta Math.147, 237–264 (1981)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Hedberg, L.I., Wolff, Th.H.: Thin sets in nonlinear potential theory. Ann. Inst. FourierXXXIII-4, 161–187 (1983)MathSciNetGoogle Scholar
  6. 6.
    Kallianpur, G., Mandrekar, V.: Markov property for generalized Gaussian random fields. Ann. Inst. FourierXXIV, 143–167 (1974)MathSciNetGoogle Scholar
  7. 7.
    Kolsrud, T.: Capacitary integrals in Dirichlet spaces. Math. Scand.55, 95–120 (1984)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Kolsrud, T.: Localisation of superharmonic functions in not necessarily local Dirichlet spaces. In Séminaire de Théorie du Potentiel, Orsay 1983, Lecture Notes in Math.1096, Berlin-Heidelberg-New York: Springer 1984Google Scholar
  9. 9.
    Kolsrud, T.: Fine potential theory in Dirichlet spaces. To appear in Osaka J. Math.23, 2 (1986)MathSciNetGoogle Scholar
  10. 10.
    Maeda, F.-Y.: Dirichlet integrals on harmonic spaces. Lecture Notes in Math.803. Berlin-Heidelberg-New York: Springer 1980zbMATHGoogle Scholar
  11. 11.
    Martin-Löf, A.: Limit theorems for the motion of a Poisson system of independent Markovian particles with high density. Z. Wahrscheinlichkeitstheor. Verw. Geb.34, 205–223 (1976)zbMATHCrossRefGoogle Scholar
  12. 12.
    Nelson, E.: The free Markov field. J. Funct. Anal.12, 221–227 (1973)Google Scholar
  13. 13.
    Rozanov, Yu.A.: Markov random fields. Berlin-Heidelberg-New York: Springer 1982zbMATHGoogle Scholar
  14. 14.
    Röckner, M.: Markov property of generalized fields and axiomatic potential theory. Math. Ann.264, 153–177 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Röckner, M.: Generalized Markov fields and Dirichlet forms. Acta Appl. Math.3, 285–311 (1985)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Urbanik, K.: Generalized stationary processes of Markovian character. Studia Math.XXI, 261–282 (1962)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Torbjörn Kolsrud
    • 1
  1. 1.Department of MathematicsUniversity of StockholmStockholmSweden

Personalised recommendations