Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The evolution of pathways for aromatic hydrocarbon oxidation inPseudomonas


The organisation and nucleotide sequences coding for the catabolism of benzene, toluene (and xylenes), naphthalene and biphenylvia catechol and the extradiol (meta) cleavage pathway inPseudomonas are reviewed and the various factors which may have played a part in their evolution are considered. The data suggests that the complete pathways have evolved in a modular way probably from at least three elements. The commonmeta pathway operons, downstream from the ferredoxin-like protein adjacent to the gene for catechol 2,3-dioxygenase, are highly homologous and clearly share a common ancestry. This common module may have become fused to a gene or genes the product(s) of which could convert a stable chemical (benzoate, salicylate, toluene, benzene, phenol) to catechol, thus forming the lower pathway operons found in modern strains. The upper pathway operons might then have been acquired as a third module at a later stage thus increasing the catabolic versatility of the host strains.

This is a preview of subscription content, log in to check access.


  1. Abril M-A, Buck M & Ramos JL (1991) Activation of thePseudomonas TOL plasmid upper pathway operon. Identification of binding sites for the positive regulator XylR and for integration host factor protein. Journal of Biological Chemistry 266: 15832–15838

  2. Assinder SJ & Williams PA (1988) Comparison of themeta pathway operons on NAH plasmid pWW60-22 and TOL plasmid pWW53-4 and its evolutionary significance. Journal of General Microbiology 134: 2769–2778

  3. Assinder SJ & Williams PA (1990) The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Advances in Microbial Physiology 31: 1–69

  4. Assinder SJ, Marco P de, Sayers JR, Shaw LE, Winson MK & Williams PA (1992) Identical resolvases are encoded byPseudomonas TOL plasmids pWW53 and pDK1. Nucleic Acids Research 20: 5476

  5. Assinder SJ, Marco P de, Osborne DJ, Poh CL, Shaw LE, Winson MK & Williams PA (1993) A comparison of the multiple alleles ofxylS carried by TOL plasmids pWW53 and pDK1 and its implications for their evolutionary relationship. Journal of General Microbiology 139: 557–568

  6. Asturias JA & Timmis KN (1993) Three different 2,3-dihydroxybiphenyl dioxygenase genes in the Gram-positive poly-chlorinated biphenyl-degrading bacteriumRhodococcus globerulus P6. Journal of Bacteriology 175: 4631–4648

  7. Benjamin RC, Voss JA & Kunz DA (1991) Nucleotide sequence ofxylE from the TOL pDK1 plasmid and structural comparison with isofunctional catechol 2,3-dioxygenase genes from TOL pWW0 and NAH7. Journal of Bacteriology 173: 2724–2728

  8. Cane PA & Williams PA (1986) A restriction map of naphthalene catabolic plasmid pWW60-1 and the location of some of its catabolic genes. Journal of General Microbiology 132: 2919–2929

  9. Carrington B, Lowe A & Williams PA (1994) The lower pathway operon for benzoate catabolism in biphenyl-utilisingPseudomonas sp. strain IC. Microbiology 140: 499–508

  10. Catelani D, Sorlini C & Treccani V (1971) The metabolism of biphenyl byPseudomonas putida. Experientia 27: 1173–1174

  11. Chatfield LK & Williams PA (1986) Naturally occurring TOL plasmids isolated from soil carry either two homologous or two non-homologous catechol 2,3-oxygenase genes. Journal of Bacteriology 168: 878–885

  12. Clarke PH & Slater JH (1986) Evolution of enzyme structure and function inPseudomonas. In: Gunsalus IC, Sokatch JR & Ornston LN (Eds) The Bacteria, Vol 10 (pp 71–144). Academic press, New York

  13. Dagley S (1986) Biochemistry of aromatic hydrocarbon degradation in Pseudomonads. In: Gunsalus IC, Sokatch JR & Ornston LN (Eds) The Bacteria, Vol 10 (pp 527–556). Academic press, New York

  14. Devereux J, Haeberli P & Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acid Research 12: 387–395

  15. Eaton RW & Chapman PJ (1992) Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions. Journal of Bacteriology 174: 7542–7554

  16. Erickson BD & Mondello FJ (1992) Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a multicomponent polychlorinated-biphenyl-degrading enzyme inPseudomonas strain LB400. Journal of Bacteriology 174: 2903–2912

  17. Furukawa K, Arimura N & Miyazaki T (1987) Nucleotide sequence of the 2,3-dihydroxybiphenyl dioxygenase gene ofPseudomonas pseudoalcaligenes. Journal of Bacteriology 169: 427–429

  18. Furukawa K, Hayase N, Taira K & Tomizuka N (1989) Molecular relationship of chromosomal genes encoding biphenyl/polychlorinated biphenyl catabolism: some bacteria possess a highly conservedbph operon. Journal of Bacteriology 171: 5467–5472

  19. Furukawa K, Hayashida S & Taira K (1992) Biochemical and genetic basis for the degradation of polychlorinated biphenyls in soil bacteria. In: Galli E, Silver S & Witholt B (Eds)Pseudomonas. Molecular Biology and Biotechnology (pp 259–267). American Society for Microbiology, Washington

  20. Gallegos M-T, Michan C & Ramos JL (1993) The Xyls/AraC family of regulators. Nucleic Acid Research 21: 807–810

  21. Ghosal D, You I-S & Gunsalus IC (1987) Nucleotide sequence and expression of genenahH of plasmid NAH7 and homology with genexylE of TOL pWW0. Gene 55: 19–28

  22. Gibson DT, Koch JR & Kallio RE (1968) Oxidative degradation of aromatic hydrocarbon from microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry 7: 2653–2662

  23. Gibson DT, Zylstra GJ & Chauhan S (1990) Biotransformations catalysed by toluene dioxygenase fromPseudomonas putida F1. In: Silver S, Cakrabarty AM, Iglewski B & Kaplan S (Eds)Pseudomonas: Biotransformations, Pathogenesis and Evolving Biotechnology (pp 121–132). American Society for Microbiology, Washington

  24. Harayama S & Rekik M (1989) Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. Journal of Biological Chemistry 264: 15328–15333

  25. Harayama S & Rekik M (1990) Themeta cleavage operon of TOL degradative plasmid pWW0 comprises 13 genes. Molecular and General Genetics 221: 113–120

  26. Harayama S & Rekik M (1993) Comparison of the nucleotide sequences of themeta-cleavage pathway genes of the TOL plasmid pWW0 fromPseudomonas putida with othermeta-cleavage genes suggests that both single and multiple nucleotide substitutions contribute to enzyme evolution. Molecular & General Genetics 239: 81–89

  27. Harayama S & Timmis KN (1992) Aerobic biodegradation of aromatic hydrocarbons by bacteria. In: Sigel H & Sigel A (Eds) Metal Ions in Biological Systems, Vol 28. Degradation of environmental pollutants by microorganisms and their metalloenzymes (pp 99–156). Marcel Dekker Inc, New York

  28. Harayama S, Rekik M, Wasserfallen A & Bairoch A (1987) Evolutionary relationships between catabolic pathways for aromatics: conservation of gene order and nucleotide sequences of catechol oxidation genes of pWW0 and NAH7. Molecular and General Genetics 210: 241–247

  29. Harayama S, Rekik M, Wubbolts M, Rose K, Leppik RA & Timmis KN (1989) Characterization of five genes from the upper pathway operon of TOL plasmid pWW0 fromPseudomonas putida and identification of the gene products. Journal of Bacteriology 171: 5048–5055

  30. Harayama S, Rekik M, Bairoch A, Neidle EL & Ornston LN (1991a) Potential DNA slippage structures acquired during evolutionary divergence ofAcinetobacter calcoaceticus chromosomalbenABC andPseudomonas putida TOL pWW0 plasmidxylXYZ genes encoding benzoate dioxygenases. Journal of Bacteriology 173: 7540–7548

  31. Harayama S, Polissi A & Rekik M (1991b) Divergent evolution of chloroplast-type ferredoxins. FEBS Letters 285: 85–88

  32. Harayama S, Kok M & Neidle (1992) Functional and evolutionary relationships among diverse oxygenases. Annual Reviews of Microbiology 46: 565–601

  33. Haughland RA, Sangodkar UMX & Chakrabarty AM (1990) Repeated sequences including RS1100 fromPseudomonas cepacia AC1100 function as IS elements. Molecular and General Genetics 220: 222–228

  34. Higgins DG, Bleasby AJ & Fuchs R (1992) CLUSTAL V-improved software for multiple sequence alignment. Computer Applications in the Biosciences 8: 189–191

  35. Hayase N, Taira K & Furukawa K (1990)Pseudomonas putida KF715bphABCD operon encoding biphenyl and polychlorinated biphenyl degradation: cloning, analysis and expression in soil bacteria. Journal of Bacteriology 172: 1160–1164

  36. Hofer B, Eltis LD, Dowling DN & Timmis KN (1993) Genetic analysis of aPseudomonas locus encoding a pathway for biphenyl-polychlorinated biphenyl degradation. Gene 130: 47–55

  37. Holtel A, Abril M-A, Marques S, Timmis KN & Ramos J-L (1990) Promoter-upstram activator sequences are required for expression of thexylS gene and upper-pathway operon on thePseudomonas TOL plasmid. Molecular Microbiology 4: 1551–1556

  38. Horn JA, Harayama S & Timmis KN (1991) DNA sequence determination of the TOL plasmidxylGFH genes ofPseudomonas putida: implications for the evolution of aromatic catabolism. Molecular Microbiology 5: 2459–2474

  39. Horowitz NH (1945) On the evolution of biochemical syntheses. Proceedings of the National Academy of Sciences, U.S.A. 31: 153–157

  40. —— (1963) In: Bryson V & Vogel HJ (Eds) Evolving Genes and Proteins (pp 629). Academic Press, New York

  41. Inouye S, Nakazawa A & Nakazawa T (1987) Overproduction of thexylS gene and activation of thexylDLEGF operon on the TOL plasmid. Journal of Bacteriology 169: 3587–3592

  42. Inouye S, Nakazawa A & Nakazawa T (1988) Nucleotide sequence of the regulatory genexylR of the TOL plasmid fromPseudomonas putida. Gene 66: 301–306

  43. Irie S, Doi S, Yorifuji T, Takagi M & Yano K (1987) Nucleotide sequencing and characterization of the genes encoding benzene oxidation enzymes ofPseudomonas putida. Journal of Bacteriology 169: 5174–5179

  44. Jeenes DJ & Williams PA (1982) Excision and integration of degradative pathway genes from TOL plasmid pWW0. Journal of Bacteriology 150: 188–194

  45. Kabitch M & Fortnagel P (1990a) Nucleotide sequence of the metapyrocatechase I (catechol 2,3-dioxygenase I) gene fromAlcaligenes eutrophus JMP222. Nucleic Acids Research 18:5543

  46. —— (1990b) Nucleotide sequence of the metapyrocatechase II (catechol 2,3-dioxygenase II) gene fromAlcaligenes eutrophus JMP222. Nucleic Acids Research 18: 3405–3406

  47. Keil H, Lebens MR & Williams PA (1985) TOL plasmid pWW15 contains two non-homologous, independently regulated catechol 2,3-oxygenase genes. Journal of Bacteriology 163: 248–255

  48. Kimbara K, Hashimoto T, Fukuda M, Koana T, Takagi M, Oishi M & Yano K (1989) Cloning and sequencing of two tandem genes involved in the degradation of 2,3-dihydroxybiphenyl to benzoic acid in the polychlorinated biphenyl-degrading soil bacteriumPseudomonas sp. strain KKS102. Journal of bacteriology 171: 2740–2747

  49. Kuhm AE, Stolz A & Knackmuss H-J (1991) Metabolism of naphthalene by biphenyl-degrading bacteriumPseudomonas paucimobilis Q1. Biodegradation 2: 115–120

  50. Kukor JJ & Olsen RH (1991) Genetic organisation and regulation of ameta cleavage pathways for catechols produced from catabolism of toluene, benzene, phenol and cresols byPseudomonas pickettii PKO1. Journal of Bacteriology 173: 4587–4594

  51. Kunz DA & Chapman PJ (1981) Catabolism of pseudocumene and 3-ethyltoluene byPseudomonas putida (arvilla mt-2: evidence for new functions of the TOL (pWW0) plasmid. Journal of Bacteriology 146: 179–191

  52. Kurkela S, Lehväslaiho H, Palva ET & Teeri TH (1988) Cloning, nucleotide sequence and characterization of genes encoding naphthalene dioxygenase ofPseudomonas putida strain NCIB9816. Gene 73: 355–362

  53. Lloyd-Jones G, Jong C de, Ogden RC, Duetz WA & Williams PA (1994) Recombination of theBph (biphenyl catabolic genes from plasmid pWW100 and their deletion during growth on benzoate. Applied and Environmental Microbiology 60: 691–696

  54. Mason JR & Cammack R (1992) The electron-transport proteins of hydroxylating bacterial dioxygenases. Annual Reviews of Microbiology 46: 277–305

  55. Men F-M, Zylstra GJ & Gibson DT (1991) Location and sequence of thetodF gene encoding 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase inPseudomonas putida F1. Gene 104: 91–94

  56. Nakatsu C, Ng J, Singh R, Straus N & Wyndham C (1991) Chlorobenzoate catabolic transposon Tn5271 is a composite class I element with flanking class II insertion sequences. Proceedings of the National Academy of Sciences, U.S.A. 88: 8312–8316

  57. Nakai C, Kagimiyama H, Nozaki M, Nakazawa T, Inouye S, Ebina Y & Nakazawa A (1983) Complete nucleotide sequence of the metapyrocatechase gene on the TOL plasmid ofP. putida mt-2. Journal of Biological Chemistry 258: 2923–2928

  58. Nakazawa T, Hayashi E, Yokota T, Ebina Y & Nakazawa T (1978) Isolation of TOL and RP4 recombinants by integrative suppression. Journal of Bacteriology 134: 270–277

  59. Neidle EL, Hartnett CS, Bonitz S & Ornston LN (1988) DNA aequence of theAcinetobacter calcoaceticus catechol 1,2-dioxygenase I structural genecatA: evidence for evolutionary divergence of intradiol dioxygenases by acquisition of DNA sequence repetitions. Journal of Bacteriology 170: 4874–4880

  60. Neidle EL, Hartnett C, Ornston LN, Bairoch A, Rekik M & Harayama S (1991) Nucleotide sequences of theAcinetobacter calcoaceticus benABC genes for benzoate 1,2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases. Journal of Bacteriology 173: 5385–5395

  61. —— (1992)Cis-diol dehydrogenases encoded by the TOL pWW0 plasmidxylL and theAcinetobacter catlcoaceticus chromosomalbenD gene are members of the short-chain alcohol dehydrogenase superfamily. European Journal of Biochemistry 204: 113–120

  62. Nordlund I & Shingler V (1990) Nucleotide sequence of themeta cleavage pathway enzymes 2-hydroxymuconic semialdehyde dehydrogenase and 2-hydroxymuconic semialdehyde hydrolase. Biochimica Biophysical Acta 1049: 227–230

  63. Nordlund I, Powlowski J & Shingler V (1990) Complete nucleotide sequence and polypeptide analysis of multicomponent phenol hydroxylasefromPseudomonas sp. strain CF600. Journal of Bacteriology 172: 6826–6833

  64. Ornston LN, Neidle EL & Houghton JE (1990) Gene rearrangements, a force for evolutionary change: DNA sequence arrangements, a source of genetic constancy. In: Drilca K & Riley M (Eds) The Bacterial Chromosome (pp 325–334). American Society for Microbiology, Washington

  65. Osborne DJ, Pickup RW & Williams PA (1988) The presence of two homologousmeta pathway operons on TOL plasmid pWW53. Journal of General Microbiology 134: 2965–2975

  66. Palleroni NJ (1992) Present situation of the taxonomy of aerobic pseudomonads. In: Galli E, Silver S & Witholt B (Eds)Pseudomonas: Molecular Biology and Biotechnology (pp 105–115). American Society for Microbiology, Washington

  67. Polissi A & Harayama S (1993) In vitro reactivation of catechol 2,3-dioxygenase mediated by a chloroplast-type ferredoxin: a bacterial strategy to expand the substrate specificity of aromatic degradative pathways. EMBO Journal 12: 3339–3347

  68. Powlowski J & Shingler V (1990) In vitro analysis of polypeptide requirements of multicomponent phenol hydroxylase fromPseudomonas sp. strain CF600. Journal of Bacteriology 172: 6834–6840

  69. Ramos J-L, Mermod N & Timmis KN (1987) Regulatory circuit controlling transcription of TOL plasmid operon encodingmeta-cleavage pathway for degradation of alkylbenzoates byPseudomonas. Molecular Microbiology 1: 293–300

  70. Saint CP, McClure NC & Venables WA (1990) Physical map of the aromatic amine and m-toluate catabolic plasmid pTDN1 inPseudomonas putida: location of a unique meta-cleavage pathway. Journal of General Microbiology 136: 615–625

  71. Schell MA & Wender PE (1986) Identification of thenahR gene product and nucleotide sequences required for its activation of thesal operon. Journal of Bacteriology 166: 9–14

  72. Shaw JP, Rekik M, Schwager F & Harayama S (1993) Kinetic studies on benzyl alcohol dehydrogenase encoded by TOL plasmid pWW0. A member of the zinc-containing long chain alcohol dehydrogenase family. Journal of Biological Chemistry 268: 10842–10850

  73. Shingler V, Powlowski J & Marklund U (1992) Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway ofPseudomonas sp. strain CF600. Journal of Bacteriology 174: 711–724

  74. Shingler V, Bartilson M & Moore T (1993) Cloning a nucleotide sequence of the gene encoding the positive regulator (DmpR) of the phenol catabolic pathway encoded by pVI150 and identification of DmpR as a member of the NtrC family of transcriptional activators. Journal of Bacteriology 175: 1596–1604

  75. Simon MJ, Oslund TD, Saunders R, Ensley BD, Suggs S, Harcourt A, Suen W, Cruden DL, Gibson DT & Zylstra GJ (1993) Sequences of genes encoding naphthalene dioxygenase inPseudomonas putida strains G7 and NCIB9816-4. Gene 127: 31–37

  76. Sinclair MI, Max PC, Lyon BR & Holloway BW (1986) Chromosomal location of TOL plasmid DNA inPseudomonas putida. Journal of Bacteriology 168: 1302–1308

  77. Springael D, Kreps S & Mergeay M (1993) Identification of a catabolic transposon Tn4371 carrying biphenyl and 4-chlorobiphenyl degradation genes inAlcaligenes eutrophus A5. Journal of Bacteriology 175: 1674–1681

  78. Stainthorpe AC, Lees V, Salmond GPC, Dalton H & Murrell JC (1990) The methane monooxygenase gene cluster ofMethylococcus capsulatus (Bath). Gene 91: 27–34

  79. Suzuki M, Hayakawa T, Shaw JP, Rekik M & Harayama S (1991) Primary structure of xylene monooxygenase: similarities to and differences from the alkane hydroxylating system. Journal of Bacteriology 173: 1690–1695

  80. Taira K, Hayase N, Arimura N, Yamashita S, Miyazaki T & Furukawa K (1988) Cloning and nucleotide sequence of the 2,3-dihydroxybiphenyl dioxygenase gene from the PCB-degrading strain ofPseudomonas paucimobilis Q1. Biochemistry 27: 3990–3996

  81. Taira K, Hirose J, Hayashida S & Furukawa K (1992) Analysis ofbph operon from the polychlorinated biphenyl-degrading strain ofPseudomonas pseudoalcaligenes KF707. Journal of Biological Chemistry 267: 4844–4853

  82. Thomas AW, Slater JH & Weightman AJ (1992) The dehalogenase genedehl fromPseudomonas putida PP3 is carried on an unusual mobile genetic element designatedDEH. Journal of Bacteriology 174: 1932–1940

  83. Tsuda M (1993) Catabolic transposons in Pseudomonads. In: Proceedings of the 2nd International Symposium on Genetic Engineering & Biotechnology

  84. Tsuda M & Iino T (1987) Genetic analysis of a transposon carrying toluene degrading genes on TOL plasmid pWW0. Molecular and General Genetics 210: 270–276

  85. —— (1988) Identification and characterization of Tn4653, a transposon covering the toluene transposon Tn4651 on TOL plasmid pWW0. Molecular and General Genetics 213: 72–77

  86. —— (1990) Naphthalene degrading genes on plasmid NAH7 are on a defective transposon. Molecular and General Genetics 223: 33–39

  87. Meer JR van der, Roelofsen W, Schraa G & Zehnder AJB (1987) Degradation of low concentrations of dichlorobenzenes byPseudomonas sp. P51 in nonsterile soil columns. FEBS Microbial Ecology 45: 333–341

  88. Meer JR van der, Neerven ARW van, Vries EJ de, Vos WM de & Zehnder AJB (1991a) Cloning and characterization of plasmid-coded genes for the degradation of 1,2-dichloro, 1,4-dichloro- and 1,2,4-trichlorobenzene ofPseudomonas sp. strain P51. Journal of Bacteriology 173: 6–15

  89. Meer JM van der, Eggen RIL, Zehnder AJB & Vos WM de (1991b) Sequence analysis of thePseudomonas sp. strain P51tcb gene cluster which encodes metabolism of chlorinated catechols: evidence for specialisation of catechol 1,2-dioxygenases for chlorinated substrates. Journal of Bacteriology 173: 2425–2434

  90. Meer JM van der, Frijters ACJ, Leveau JHL, Eggen RIL, Zehnder AJB & Vos MW de (1991c) Characterization of thePseudomonas sp. strain P51 genetcbR, a LysR-type transcriptional activator of thetcbCDEF chlorocatechol oxidative operon and analysis of the regulatory region. Journal of Bacteriology 173: 3700–3708

  91. Meer JM van der, Zehnder AJB & Vos WM de (1991d) Identification of a novel composite transposable element Tn5280 carrying chlorobenzene dioxygenase genes ofPseudomonas sp. strain P51. Journal of Bacteriology 173: 7077–7083

  92. Meer JF van der, Vos WM de, Harayama S & Zehnder AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiological Reviews 56: 677–694

  93. White GP & Dunn NW (1977) Apparent fusion of the TOL plasmid with the R91 drug resistance plasmid inPseudomonas aeruginosa. Australian Journal of Biological Science 30: 345–355

  94. Yates JR & Mondello FJ (1989) Sequence similarities in the genes encoding polychlorinated biphenyl degradation byPseudomonas strain LB400 andAlcaligenes eutrophus H850. Journal of Bacteriology 171: 1733–1735

  95. Worsey MJ & Williams PA (1975) Metabolism of toluene and xylenes byPseudomonas putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. Journal of Bacteriology 124: 7–13

  96. Yen M & Gunsalus IC (1982) Plasmid gene organisation: naphthalene/salicylate oxidation. Proceedings of the National Academy of Sciences of the USA 79: 874–878

  97. Yen K-M & Gunsalus IC (1985) Regulation of naphthalene catabolic genes of plasmid NAH7. Journal of Bacteriology 162: 1008–1013

  98. Yen K-M & Karl MR (1992) Identification of a new gene,tmoF, in thePseudomonas mendocinaKR1 gene cluster encoding toluene-4-monooxygenase. Journal of Bacteriology 174: 7253–7261

  99. Zylstra GJ & Gibson DT (1989) Toluene degradation byPseudomonas putida F1. Nucleotide sequence of thetodC1C2BADE genes and their expression inEscherichia coli. Journal of Biological Chemistry 264: 14940–14946

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Williams, P.A., Sayers, J.R. The evolution of pathways for aromatic hydrocarbon oxidation inPseudomonas . Biodegradation 5, 195–217 (1994). https://doi.org/10.1007/BF00696460

Download citation

Key words

  • Aromatic catabolism
  • by bacteria (Pseudomonas)
  • evolution
  • of catabolic pathways
  • hydrocarbons
  • catabolism of aromatic
  • Pseudomonas
  • evolution of catabolism in
  • oxygenases
  • evolution of