Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Physiological properties and substrate specificity of a pentachlorophenol-degradingPseudomonas species


A bacterial strain capable of utilizing pentachlorophenol (PCP) as sole source of carbon and energy for growth was isolated from enrichment cultures containing 100 mg/l PCP in a mineral salts medium inoculated with contaminated soil from a lumber treatment waste site. The isolate, designated strain SR3, was identified as a species ofPseudomonas by virtue of its physiological and biochemical characteristics. Mineralization of PCP byPseudomonas sp. strain SR3 was demonstrated by loss of detectable PCP from growth medium, stoichiometry of chloride release (5 equivalents of chloride per mole of PCP), and formation of biomass consistent with the concentration of PCP mineralized. PCP-induced cells of strain SR3 showed elevated rates of oxygen consumption in the presence of PCP, and with different chlorinated phenols, with complete degradation of 2,3,5,6-, 2,3,6-, 2,4,6-, 2,4-, and 2,6-chloro-substituted phenols. Concentrations of PCP up to 175 mg/liter supported growth of this organism, but maximal rates of PCP removal were observed at a PCP concentration of 100 mg/liter. Based on its degradative properties,Pseudomonas sp. strain SR3 appears to have utility in bioremediation of soil and water contaminated with PCP.

This is a preview of subscription content, log in to check access.









  1. Apajalahti JHA, Karpanoja P & Salkinoja-Salonen MS (1986)Rhodococcus chlorophenolicus sp. nov., a chlorophenol-mineralizing actinomycete. Inter. J. Sys. Bacteriol. 36:246–251

  2. Apajalahti JHA & Salkinoja-Salonen MS (1984) Absorption of pentachlorophenol (PCP) by bark chips and its role in microbial PCP degradation. Microb. Ecol. 10:359–367

  3. Apajalahti JHA & Salkinoja-Salonen MS (1987) Dechlorination andpara-hydroxylation of polychlorinated phenols byRhodococcus chlorophenolicus. J. Bacteriol. 169:675–681

  4. Ballard RW, Doudoroff M, Stanier RY & Mandel M (1968) Taxonomy of the aerobic pseudomonads:Pseudomonas diminuta andPseudomonas vesiculare. J. Gen. Microbiol. 53:349–361

  5. Beechey RB & Ribbons DW (1972) Oxygen electrode measurements. In: Norris JR & Ribbons DW (Eds) Methods in Microbiology, Vol 6B (pp 25–53). Academic Press, New York

  6. Chu J & Kirsch EJ (1973) Utilization of halophenols by a pentachlorophenol metabolizing bacterium. Dev. Ind. Micro. 14:264–273

  7. Chu JP & Kirsch EJ (1972) Metabolism of pentachlorophenol by an axenic bacterial culture. Appl. Environ. Microbiol. 23:1033–1035

  8. Cirelli DP (1978) Patterns of pentachlorophenol usage in the United States of America — An overview. In: Rao KR (Ed) Pentachlorophenol: Chemistry, Pharmacology, and Environmental Toxicology (pp 13–18). Plenum Press, Pensacola, FL

  9. Edgehill RU & Finn RK (1983) Microbial treatment of soil to remove pentachlorophenol. Appl. Environ. Microbiol. 45:1122–1125

  10. Hareland WA, Crawford RL, Chapman PJ & Dagley S (1975) Metabolic function and properties of 4-hydroxyphenylacetic acid 1-hydroxylase fromPseudomonas acidovorans. J. Bacteriol. 121:272–285

  11. Imai K, Asano A & Sato R (1967) Oxidative phosphorylation inMicrococcus denitrificans: I. Preparation and properties of phosphorylating membrane fragments. Biochem. Biophys. Acta 143:462–476

  12. Keith LH & Telliard WA (1979) Priority pollutants I — a perspective view. Environ. Sci. Technol. 13:416–423

  13. Ludmila GA, Zaborina O, Pertsova R, Baskvnov B, Schurukhin Y & Kuzmin S (1992) Degradation of polychlorinated phenols byStreptomyces rochei 303. Biodegradation 2:201–208

  14. Maniatis T, Fritsch EF & Sambrook J (1982) Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

  15. Middaugh DP, Resnick SM, Lantz SE, Heard CS & Mueller JG (1993) Toxicological assessment of biodegraded pentachlorophenol: Microtox© and fish embryos. Bull. Environ. Contam. Toxicol. 24:165–172

  16. Mueller JG, Chapman PJ & Pritchard PH (1989) Creosotecontaminated sites: their potential for bioremediation. Environ. Sci. Technol. 23:1197–1201

  17. Mueller JG, Lantz SE, Ross D, Colvin RJ, Middaugh DP & Pritchard PH (1993) Strategy using bioreactors and specially selected microorganisms for bioremediation of groundwater contaminated with creosote and pentachlorophenol. Environ. Sci. Technol. 27:691–698

  18. Orser CS, Lange CC, Xun L, Zahrt TC & Schneider BJ (1993) Cloning, sequence analysis, and expression of theFlavobacterium pentachlorophenol-4-monooxygenase gene inEscherichia coli. J. Bacteriol. 175:411–416

  19. Palleroni NJ (1984) Family I. Pseudomonadaceae. In: Krieg NR (Ed) Bergey's Manual of Systematic Bacteriology (pp 141–199). The Williams & Wilkens Co., Baltimore

  20. Radehaus PM & Schmidt SK (1992) Characterization of a novelPseudomonas sp. that mineralizes high concentrations of pentachlorophenol. Appl. Environ. Microbiol. 58:2879–2885

  21. Reiner EA, Chu J & Kirsch EJ (1978) Microbial metabolism of pentachlorophenol. In: Rao KR (Ed) Pentachlorophenol: Chemistry, Pharmacology, and Environmental Toxicology (pp 67–81). Plenum Press, New York

  22. Ribbons DW, Ohta Y & Higgins IJ (1971) Specificity of a catabolic pathway — a lesson learned from indirect assays. J. Bacteriol. 106:702–703

  23. Saber DL & Crawford RL (1985) Isolation and characterization ofFlavobacterium strains that degrade pentachlorophenol. Appl. Environ. Microbiol. 50:1512–1518

  24. Schenk T, Muller R, Morsberger F, Otto MK & Lingens F (1989) Enzymatic dehalogenation of pentachlorophenol by extracts fromArthrobacter sp. strain ATCC33790. J. Bacteriol. 171:5487–5491

  25. Stanlake GJ & Finn RK (1982) Isolation and characterization of a pentachlorophenol degrading bacterium. Appl. Environ. Microbiol. 44:1421–1427

  26. Steiert JG & Crawford RL (1986) Catabolism of pentachlorophenol by aFlavobacterium sp. Biochem. Biophys. Res. Commun. 141:825–830

  27. Steiert JG, Pignatello JJ & Crawford RL (1987) Degradation of chlorinated phenols by a pentachlorophenol degrading bacterium. Appl. Environ. Microbiol. 53:907–910

  28. Suzuki T (1977) Metabolism of pentachlorophenol by a soil microbe. J. Environ. Sci. Health B 12:113–127

  29. US EPA (1989) Hazardous wastes from non-specific sources. 40 CFR subpart 261.31

  30. Wahlund TM, Woese CR, Castenholtz RW & Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs,Chlorobium tepidum sp. nov. Arch. Microbiol. 156:81–90

  31. Watanabe I (1973) Isolation of pentachlorophenol decomposing bacteria from soil. Soil Sci. Plant Nutr. 19:109–116

  32. Weinbach EC (1954) The effect of pentachlorophenol on oxidative phosphorylation. J. Biol. Chem. 210:545–550

  33. Xun L & Orser CS (1991) Purification and properties of pentachlorophenol hydroxylase, a flavoprotein fromFlavobacterium sp. strain ATCC 39723. J. Bacteriol. 173:4447–4453

  34. Xun L, Topp E & Orser CS (1992) Confirmation of oxidative dehalogenation of pentachlorophenol by aFlavobacterium pentachlorophenol hydroxylase. J. Bacteriol. 174:5745–5747

Download references

Author information

Additional information

Contribution No. 750 from the United States Environmental Protection Agency Environmental Research Laboratory, Gulf Breeze, FL32561, USA. A preliminary report of this work has appeared in abstract form (Resnick & Chapman 1990; Abstr. Annu Meet Amer Soc Microbiol Q-70, p. 300).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Resnick, S.M., Chapman, P.J. Physiological properties and substrate specificity of a pentachlorophenol-degradingPseudomonas species. Biodegradation 5, 47–54 (1994).

Download citation

Key words

  • biodegradation
  • dechlorination
  • pentachlorophenol
  • Pseudomonas sp.