Applied Physics B

, Volume 48, Issue 3, pp 257–260 | Cite as

An explanation of the direction of the relaxation in the HCN gas microwave laser, and a new assignment of further laser lines along the path of internal vibrational energy redistribution

  • W. Quapp
Contributed Papers


We assume a direct connection between the shape of the anharmonic potential energy surface of a molecule and its internal vibrational energy redistribution. In the case of HCN there is a transition from convex to concave behaviour of the equipotential lines in the fundamental range. This explains the existence of the known laser transitions in the line systems of 1110–0400 and 1200, 1220–0510, and leads to the assignment of further lines at 35.211, 18.335, and 14.792 cm−1 to 1000–0310, 0330 and the line at 12.928 cm−1 to 2000–0600. For the pure IVR transition we assume symmetry selection ±↔± without a Coriolis resonance.


82.20Rp 42.55Hq 31.10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.A. Gebbie, N.W.B. Stone, F.D. Findlay: Nature202, 685 (1964)Google Scholar
  2. 2.
    D.R. Lide, A.G. Maki: Appl. Phys. Lett.11, 62–64 (1967)Google Scholar
  3. 3.
    A.G. Maki: Appl. Phys. Lett.12, 122–124 (1968)Google Scholar
  4. 4.
    L.O. Hocker, A. Javan, D. Ramachandra Rao, L. Frenkel, T. Sullivan: Appl. Phys. Lett.10, 147–149 (1967)Google Scholar
  5. 5.
    L.O. Hocker, A. Javan: Phys. Lett.25A, 489–490 (1967)Google Scholar
  6. 6.
    F.C. DeLucia, P.A. Helminger: J. Chem. Phys.67, 4262–4267 (1977)Google Scholar
  7. 6a.
    D.D. Skatrud, F.C. DeLucia: Appl. Phys. B35, 179–193 (1984)Google Scholar
  8. 7.
    L.E.S. Mathias, A. Crocker, M.S. Wills: IEEE J. QE-4, 205–208 (1968)Google Scholar
  9. 8.
    F.K. Kneubühl, C. Sturzenegger: InInfrared and Millimeter Waves, Vol. 3, ed. by K.J. Button (Academic, New York 1980) pp. 219–274Google Scholar
  10. 9.
    K. Narahari Rao, A.W. Mantz: InMolecular Spectroscopy: Modern Research, ed. by K.N. Rao, C.W. Mathews (Academic, New York 1972) pp. 141–178Google Scholar
  11. 10.
    R. Beck, W. Englisch, K. Gürs: Table of Laser Lines in Gases and Vapors, 3rd ed., Springer Ser. Opt. Sci., Vol. 2 (Springer, Berlin, Heidelberg 1980) p. 103Google Scholar
  12. 11.
    W. Quapp: J. Mol. Spectrosc.125, 122–127 (1987)Google Scholar
  13. 12.
    W. Quapp, D. Heidrich: Infrared Phys.28, 83–89 (1988)Google Scholar
  14. 13.
    K.M. Dunn, J.E. Boggs, P. Pulay: J. Chem. Phys.85, 5838–5847 (1986)Google Scholar
  15. 14.
    J.M. Brown, J.T. Hougen, K.-P. Huber, J.W.C. Jones, I. Kopp, H. Lefebre-Brion, A.J. Merer, D.A. Ramsay, J. Rostas, R.N. Zare: J. Mol. Spectrosc.55, 500–503 (1975)Google Scholar
  16. 15.
    A.G. Maki, L.R. Blaine: J. Mol. Spectrosc.12, 45–68 (1964)Google Scholar
  17. 16.
    A.G. Maki, D.R. Lide: J. Chem. Phys.47, 3206–3210 (1967)Google Scholar
  18. 17.
    A.G. Maki, W.B. Olsen, R.L. Sams: J. Mol. Spectrosc.36, 433–437 (1970)Google Scholar
  19. 18.
    A.G. Maki: J. Mol. Spectrosc.58, 308–315 (1975)Google Scholar
  20. 19.
    D. Papouśek, M.R. Aliev: Molecular Vibrational-Rotational Spectra (Academia, Prague 1982)Google Scholar
  21. 19a.
    V.K. Wang, J. Overend: Spectrochim. Acta A29, 687–702 (1973)Google Scholar
  22. 20.
    H.J. Schötzau, F. Kneubühl: Appl. Phys.6, 25–30 (1975)Google Scholar
  23. 20a.
    Ch. Sturzenegger, H. Vetsch, F. Kneubühl: Infrared Phys.19, 277–296 (1979)Google Scholar
  24. 20b.
    F. Kneubühl: Opt. Acta.32, 1055–1069 (1985);Google Scholar
  25. 20c.
    M. Kawamura, I. Okabayashi, T. Fukuyama: IEEE J. QE-21, 1833–1837 (1985)Google Scholar
  26. 21.
    H.J. Steffen, J.F. Moser, F.K. Kneubühl: Phys. Lett.20, 20–21 (1966)Google Scholar
  27. 22.
    J.B. Cohen, E.B. Wilson: J. Chem. Phys. bd58, 442–455 (1973)Google Scholar
  28. 23.
    R.N. Dixon, N. Little, M.J. Trenouth, C.M. Western: Chem. Phys. Lett.121, 41–44 (1985)Google Scholar
  29. 24.
    J.-I. Choe, D.K. Kwak, S.G. Kukolich: J. Mol. Spectrosc.121, 75–83 (1987)Google Scholar
  30. 25.
    G. Herzberg:Molecular Spectra and Molecular Structure, Vol. 2 (Van Nostrand, Toronto 1954)Google Scholar
  31. 26.
    D.H. Rank, G. Skorino, D.P. Eastman, T.A. Wiggins: J. Opt. Soc. Am.50, 421–432 (1960)Google Scholar
  32. 27.
    W. Quapp, D. Heidrich: Wiss. Z. Karl-Marx-Univ., Leipzig, Math.-Naturwiss. Reihe33, 410–417 (1984)Google Scholar
  33. 27a.
    D. Heidrich, W. Quapp: Theor. Chim. Acta70, 89–98 (1986)Google Scholar
  34. 27b.
    B. Illek: Dissertation, Universität Leipzig (1982)Google Scholar
  35. 28.
    H. Dachsel: Diplomarbeit, Universität Leipzig (1986)Google Scholar
  36. 28a.
    W. Quapp, D. Heidrich: Theor. Chim. Acta66, 245–260 (1984)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • W. Quapp
    • 1
  1. 1.Department of MathematicsKarl-Marx-UniversityLeipzigGerman Democratic Republic

Personalised recommendations