Journal of comparative physiology

, Volume 101, Issue 2, pp 121–132 | Cite as

Water balance inTenebrio molitor, L. Larvae; the effect of atmospheric water absorption

  • John Machin


Fasting mealworms gain weight in 98 and 92, but not in 85% R.H. at rates which increase with humidity and animal size above a threshold of 88.2%. Weight gains are associated with substantial increases in body water content and considerable haemolymph dilution. Blocking the anus eliminates weight gains confirming the rectum as the probable site of atmospheric absorption. No absorption was observed in animals five days before and one day following ecdysis. Fasting mealworms lack adequate means of regulating atmospheric absorption during prolonged exposure to high humidities. Initial absorption in fasting animals permits accelerated growth when they are subsequently fed. Calculations estimate that a net gain of water from the food only occurs in humidities above 70%. Atmospheric absorption is about 1.5 times faster than net gain from the food at 98% R.H. and almost three times as fast in 92%.


Weight Gain Body Water Human Physiology Water Absorption Water Balance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beament, J. W. L.: The waterproofing mechanism of arthropods. I. The effect of temperature on cuticle permeability in terrestrial insects and ticks. J. exp. Biol.36, 391–422 (1959)Google Scholar
  2. Beament, J. W. L.: The water relations of insect cuticle. Biol. Rev.36, 281–320 (1961)Google Scholar
  3. Beament, J. W. L.: The active transport and passive movement of water in insects. Adv. Insect Physiol.2, 67–129 (1964)Google Scholar
  4. Beament, J. W. L.: The active transport of water: evidence, models and mechanisms. Symp. Soc. exp. Biol.19, 273–298 (1965)Google Scholar
  5. Buxton, M. A.: Evaporation from the meal-worm (Tenebrio: Coleoptera) and atmospheric humidity. Proc. roy. Soc. B106, 560–577 (1930)Google Scholar
  6. Evans, A. C., Goodliffe, E. R.: The utilization of food by the larva of the mealwormTenebrio molitor L. (Coleopt.). Proc. roy. ent. Soc. Lond. A14, 57–62 (1939)Google Scholar
  7. Fraenkel, G., Blewett, M., Coles, M.: The nutrition of the mealworm,Tenebrio molitor L. (Tenebrinonidae, Coleoptera). Physiol. Zool.23, 92–108 (1950)Google Scholar
  8. Grimstone, A. V., Mullinger, A. M., Ramsay, J. A.: Further studies on the rectal complex of the mealwormTenebrio molitor, L. (Coleoptera, Tenebrionidae). Phil. Trans. B253, 343–382 (1968)Google Scholar
  9. Janisch, E.: Über die Methoden zur Konstanthaltung von Temperatur und Luftfeuchtigkeit in biologischen Laboratoriumsversuchen. In: Handbuch der biologischen Arbeitsmethoden, Abt 5. 10, p. 87–112 (1938)Google Scholar
  10. Johansson, B.: Der Gaswechsel beiTenebrio molitor in seiner Abhängigkeit von der Nahrung. Acta Univ. Lund.16, 1–36 (1920)Google Scholar
  11. Krogh, A., Weis-Fogh, T.: The respiratory exchange of the desert locust (Schistocerca gregaria) before, during and after flight. J. exp. Biol.28, 344–358 (1951)Google Scholar
  12. Leclercq, J.: Contribution à l'étude du métabolisme de l'eau chez la larve deTenebrio molitor L. Arch. int. Physiol.55, 412–419 (1948)Google Scholar
  13. Locke, M.: The structure and formation of the integument in insects. In: The physiology of insecta (Rockstein, M., ed.), vol. III, p. 379–470. New York: Academic Press 1964Google Scholar
  14. Machin, J.: Passive water movements through skin of the toadBufo marinus in air and in water. Amer. J. Physiol.216, 1562–1568 (1969)Google Scholar
  15. Macleod, G. F.: X-ray studies of starving mealworm larvae. Ann. ent. Soc. Amer.34, 696–701 (1941)Google Scholar
  16. Mellanby, K.: The effect of atmospheric humidity on the metabolism of the fasting mealworm (Tenebrio molitor L., Coleoptera). Proc. roy. Soc. Lond. B111, 376–390 (1932)Google Scholar
  17. Mellanby, K.: Humidity and insect metabolism. Nature (Lond.)138, 124–125 (1936)Google Scholar
  18. Noble-Nesbitt, J.: Water uptake from subsaturated atmospheres: its site in insects. Nature (Lond.)225, 753–754 (1970a)Google Scholar
  19. Noble-Nesbitt, J.: Water balance in the firebrat,Thermobia domestica (Packard). J. exp. Biol.52, 193–200 (1970b)Google Scholar
  20. Ramsay, J. A.: The rectal complex of the mealwormTenebrio molitor, L. (Coleoptera, Tenebrionidae). Phil. Trans. B248, 279–314 (1964)Google Scholar
  21. Winston, P. W., Bates, D. H.: Saturated solutions for the control of humidity in biological research. Ecology41, 232–237 (1960)Google Scholar
  22. Dunbar, B. S., Winston, P. W.: The site of active uptake of atmospheric water in larvae ofTenebrio molitor. J. Insect Physiol.21, 495–500 (1975)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • John Machin
    • 1
  1. 1.Department of ZoologyUniversity of TorontoTorontoCanada

Personalised recommendations