Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The convergence domain of the Laplacian expansion of the disturbing function

  • 67 Accesses

  • 42 Citations


A computer-assisted reformulation of Sundman's determination of the the domain of absolute convergence of the Laplacian expansion fo the disturbing function is given. Sundman's results are extended to the cases of librating perihelions and a convergence criterion is established for the case of mutually inclined orbits.

This is a preview of subscription content, log in to check access.


  1. Cartan, H.: 1966,Elementare Theorien der Analytischen Funktionen einer oder mehrerer Komplexen Veränderlichen, Bibli. Inst., Mannheim.

  2. Field, M.J.: 1974, ‘Holomorphic function theory and complex manifolds’ inGlobal Analysis and its Applications, vol.I, Intern. Atomic Energy Agency, Vienna, pp. 83–134.

  3. Hagihara, Y.: 1971,Celestial Mechanics, vol. II, part I, M.I.T.Press, Cambridge.

  4. Laskar, J.: 1988, ‘Secular evolution of the Solar system over 10 million years’,Astron. Astrophys 198, 341–362.

  5. Lemaître, A. and Henrard, J.: 1988, ‘The 3/2 resonance’,Celestial Mechanics 43, 91–98.

  6. Murray, C.D.: 1986, ‘Structure of the 2:1 and 3:2 Jovian Resonances’,Icarus 65, 70–82.

  7. Poincaré, H.: 1892,Les Méthodes Nouvelles de la Mécanique Celeste, vol. I, Gauthier-Villars, Paris.

  8. Poincaré, H.: 1898, ‘Développement de la Fonction Perturbatrice’Bull. Astron. 15, 449–464.

  9. Poincaré, H.: 1907,Leçons de Mécanique Celeste, vol. II, Gauthier-Villars, Paris.

  10. Silva, G.: 1909, ‘Sur les limites de convergence du développement de la fonction perturbatrice’Bull. Astron. 26, 49–75 and 97–114.

  11. Sundman, K.F.: 1901,Über die Störungen der Kleinen Planeten, Akad. Abhandl., K.Alexanders Univ., Helsingfors.

  12. Sundman, K.F.: 1916, ‘Sur les conditions nécessaires et suffisantes pour la convergence du développement de la fonction perturbatrice dans le mouvement plan’,Öfversigt Finska Vetenskaps-Soc. Förh. 58 A(24).

  13. Von Zeipel, H.: 1911, ‘Sur les limites de convergence des coefficients du développement de la Fonction Perturbatrice’, Arkiv Matem. Astron. Fysik6 (33).

  14. Wintner, A.: 1941,The analytical foundations of Celestial Mechanics, Princeton Univ. Press, Princeton.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferraz-Mello, S. The convergence domain of the Laplacian expansion of the disturbing function. Celestial Mech Dyn Astr 58, 37–52 (1994). https://doi.org/10.1007/BF00692116

Download citation

Key words

  • Convergence criteria
  • Sundman's criterion
  • disturbing function