Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

An experimental study of the pathogenesis of the selective lesion of the globus pallidus in acute carbon monoxide poisoning in cats

With special reference to the chronologic change in the cerebral local blood flow

  • 39 Accesses

  • 25 Citations

Summary

Twenty-eight mature cats were exposed to 0.3% carbon monoxide (CO) gas for 90–193 min using artificial ventilation. The systemic blood pressure (BP), venous pressure (VP), blood flow of the left common carotid artery (CF), and blood gas were monitored. The local blood flow (LBF) of the globus pallidus, putamen, or claustrum was measured by the hydrogen clearance method. Pallidal lesions were found histologically in 14 cats. The period of CO inhalation and the time thereafter were divided into the following four stages in the animals with pallidal lesions. Stage 1: Initial phase with rapid increase in the CF and LBF, and rapid decrease in the BP. Stage 2: Middle phase with slow decrease in the BP, CF, and LBF. Stage 3: Terminal phase with rapid decrease in the BP, CF, and LBF. Stage 4: Recovery phase. The changes in stage 3 were not so prominent in the animals without pallidal lesions. The LBF of the globus pallidus of the animals with lesions decreased to 67.3±20.7% of the initial value at the terminal stage of CO inhalation, while it was 188±46.7% in those without lesions. The difference was statistically significant (P<0.01). The LBF of the putamen or claustrum in the animals with lesions in the globus pallidus was 140±24.6% at this stage, and it was significantly higher than that of the globus pallidus (P<0.01). Other factors, such as CO inhalation time, degree of acidosis, and terminal CO-Hb concentration, did not correlate with the occurrence of the pallidal lesion.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Alexander L (1942) The vascular supply of the striopallidum. A Res Nerv Ment Dis Proc 21:77–132

  2. 2.

    Brucher JM (1967) Neuropathological problems posed by carbon monoxide poisoning and anoxia. In: Bour H, Ledingham IM (eds) Carbon monoxide poisoning. Prog Brain Res, vol 24. Elsevier, Amsterdam London New York, pp 75–100

  3. 3.

    Dunning HS, Wolff HG (1937) The relative vascularity of various parts of the central and peripheral nervous system of the cat and its relation to function. J Comp Neurol 67:433–450

  4. 4.

    Fieschi C, Bozzao L, Agnoli A, Nardini M, Bartolini A (1969) The hydrogen method of measuring local blood flow in subcortical structures of the brain; including a comparative study with the14C antipyrine method. Exp Brain Res 7:111–119

  5. 5.

    Fujii M (1960) The histopathology of the central nervous system lesions caused by carbon monoxide poisoning. A report of ten cases with an acute and protracted clinical course (in Japanese). Psychiat Neurol Jpn 62:1–34

  6. 6.

    Ginsberg MD, Myers RE, McDonagh BF (1974) Experimental carbon monoxide encephalopathy in the primate. II. Clinical aspects, neuropathology, and physiologic correlation. Arch Neurol 30:209–216

  7. 7.

    Grinker RR (1925) Über einen Fall von Leuchtgasvergiftung mit doppelseitiger Pallidumerweichung und schwerer Degeneration des tieferen Großhirnmarklagers. Z Ges Neurol Psychiat 98:433–456

  8. 8.

    Hill E, Semarak CB (1918) Changes in the brain in gas (carbon monoxide) poisoning. JAMA 71:644–648

  9. 9.

    Hiller F (1924) Über die krankhaften Veränderungen im Zentralnervensystem nach Kohlenoxydvergiftung. Z Ges Neurol Psychiatry 93:594–646

  10. 10.

    Himwich HE (1951) Brain metabolism and cerebral disorders. Williams & Wilkins, Baltimore

  11. 11.

    Hough HB, Wolff HG (1939) The relative vascularity of subcortical ganglia of the cat's brain; the putamen, globus pallidus, substantia nigra, red nucleus, and geniculate bodies. J Comp Neurol 71:427–436

  12. 12.

    Hsü YK, Ch'eng YL (1938) Cerebral subcortical myelinopathy in carbon monoxide poisoning. Brain 61:384–392

  13. 13.

    Jasper HH, Ajmone-Marsan C (1954) A stereotaxic atlas of the diencephalon of the cat. National Research Council of Canada, Ottawa

  14. 14.

    Kolisko A (1893) Beiträge zur Kenntnis der Blutversorgung der Großhirnganglien. Wien Klin Wochenschr 6:191–195

  15. 15.

    Lapresle J, Fardeau M (1967) The central nervous system and carbon monoxide poisoning II. Anatomical study of brain lesions following intoxication with carbon monoxide (22 cases). In: Bour H, Ledingham IM (ed) Carbon monoxide poisoning. Prog Brain Res, vol 24. Elsevier, Amsterdam London New York, pp 31–74

  16. 16.

    Lindenberg R (1955) Compression of brain arteries as pathogenetic factor for tissue necroses and their areas of predilection. J Neuropathol Exp Neurol 14:223–243

  17. 17.

    Meyer A (1928b) Experimentelle Erfahrungen über die Kohlenoxydvergiftung des Zentralnervensystems. Z Ges Neurol Psychiat 112:187–212

  18. 18.

    Moriya A (1961) Experimental studies on the cerebral lesions in acute carbon monoxide poisoning (in Japanese). Psychiat Neurol Jpn 63:812–835

  19. 19.

    Nakamura H, Ambo H, Takami T (1941) Studien über die Veränderungen des Gehirns bei Co-Vergiftung. Übertritt der intravenös injizierten Stoffe in die Cerebrospinalflüssigkeit und das Hirngewebe (in Japanese). Trans Soc Pathol Jpn 31:118–122

  20. 20.

    Okeda R, Funata N, Takano T, Miyazaki Y, Higashino F, Yokoyama K, Manabe M (1981) The pathogenesis of carbon monoxide encephalopathy in the acute phase — Physiological and morphological correlation. Acta Neuropathol (Berl) 54:1–10

  21. 21.

    Okeda R, Funata N, Song S. Y., Higashino F, Takano T, Yokoyama K, (1982) Comparative study on pathogenesis of selective cerebral lesions in carbon monoxide poisoning and nitrogen hypoxia in cats. Acta Neuropathol (Berl) 56:265–272

  22. 22.

    Pentschew A (1958) Intoxikationen. In: Scholz W (Hrsg) Erkrankungen des zentralen Nervensystems, II. Handbuch der speziellen pathologischen Anatomie und Histologie, Bd 13/2/B. Springer, Berlin Göttingen Heidelberg, S 1907–2502

  23. 23.

    Ruge H (1922) Kasuistischer Beitrag zur pathologischen Anatomie der symmetrischen Linsenkernerweichung bei Co-Vergiftung (12 Fälle). Arch Psychiat 64:150–205

  24. 24.

    Snider RS, Niemer WT (1970) A stereotaxic atlas of the cat brain. University of Chicago Press, Chicago London

  25. 25.

    Suwa N (1954) Morphology of circulatory disturbance in the brain. On morphological differences of cerebral lesions induced by different types of circulatory distubances in the brain (in Japanese). Saishin Igaku 9:1752–1767

  26. 26.

    Vogt C, Vogt O (1922) Erkrankungen der Großhirnrinde im Lichte der Topistik, Pathoklise und Pathoarchitektonik. J Psychol Neurol 28:1–171

Download references

Author information

Correspondence to R. Okeda.

Additional information

Supported by the Nissan Science Foundation

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Song, S.-., Okeda, R., Funata, N. et al. An experimental study of the pathogenesis of the selective lesion of the globus pallidus in acute carbon monoxide poisoning in cats. Acta Neuropathol 61, 232–238 (1983). https://doi.org/10.1007/BF00691991

Download citation

Key words

  • Selective lesion of the globus pallidus
  • Acute carbon monoxide poisoning
  • Cerebral local blood flow
  • Hydrogen clearance method