Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Modeling as a tool to manage ecosystems under multiple stresses: an application to Lake Ontario

Abstract

Present-day ecosystem management involves understanding of the synergistic effect of multiple stressors on multiple and frequently nebulous management end-points. An example is the simultaneous management of nutrient load reductions and salmon stocking in Lake Ontario. In this study, a simple whole-lake annual time scale model was developed to assess the relationship between these two stressors and various ecosystem responses. The model was used to explore the utility of some possible management end-points for ecosystem health. In historical simulations, production per stocked fish and salmon survival appeared to be good indicators, while nutrient recycling rate and average ecosystem-wide food limitation were found to be fairly unresponsive to the two stressors. The model was further used to predict long term averages of salmon biomass and selected health indicators at various sustained loading and stocking rates. Salmon biomass increased with stocking rate at all stocking rates examined, but the rate of increase declined somewhat at high stocking rates. The response of salmon biomass to nutrient loading appeared to be approximately sigmoidal i.e. there was a nutrient threshold below which fish biomass could not be sustained and another nutrient threshold above which salmon biomass either remained constant or even decreased. The response to either stressor was found to be modified by the value of the other stressor, illustrating the importance of ecosystem-level models for aquatic ecosystem management.

This is a preview of subscription content, log in to check access.

References

  1. Baird, D. & R. E. Ulanowicz, 1993. Comparative study on the trophic structure, cycling and ecosystem properties of four tidal estuaries. Marine Ecology Progress Series 99 (3): 221–237.

  2. Bierman, V. J., Jr., & D. M. Dolan, 1986. Modeling of phytoplankton in Saginaw bay: II. Post-audit phase. J. Environ. Eng., Amer. Soc. Civil Eng. 112(2): 415–429.

  3. Cairns, J. Jr, P. V. McCormick & B. R. Niederlehner, 1993. A proposed framework for developing indicators of ecosystem health. Hydrobiologia 263(1): 1–44.

  4. Cairns, Jr. J. & J. R. Pratt, 1992. Restoring ecosystem health and integrity during a human population increase to ten billion. J. Aquatic Ecosystem Health 1(1):59–68.

  5. Carpenter, S. R., Johnson, B. M., Luecke, C., Madenjian, C. R., Post, J. R., Rudstam, L. G., Vanni, M. J., He, X., Allen, Y., Dodds, R., McTigue, K. & D. Schael, 1992. Modeling the Lake Mendota ecosystem: synthesis and evaluation of progress. In: J. F. Kitchell (ed),Food Web Management: A Case Study of Lake Mendota. pp. 451–459. Springer Verlag, New York.

  6. Chapra, S. C. & K. H. Reckhow, 1983.Engineering Approaches for Lake Management. Volume 2: Mechanistic Modeling. Butterworth Publishers, Stoneham, MA.

  7. Charlton, M. N. & D. R. S. Lean, 1987. Sedimentation resuspension and oxygen depletion in Lake Erie. J. Great Lakes Res. 13(4): 709–723.

  8. Christie, W. J., M. Becker, J. W. Cowden & J. R. Vallentyne, 1986. Managing the Great Lakes basin as a home. J. Great Lakes Res. 12: 2–17.

  9. Costanza, R., Norton, B. G. & B. D. Haskell (eds), 1992.Ecosystem Health: New Goals for Environmental Management. Island Press, Washington D.C., USA.

  10. DeAngelis, D. L., 1992.Dyanmics of Nutrient Cycling and Food Webs. Chapman and Hall.

  11. Di Toro, D. M. & J. P. Connolly, 1980. Mathematical models of water quality in large lakes II. Lake Erie. Environmental Protection Agency, Duluth, Minnesota. EPA-600/3-80-065.

  12. Dobson, H. F. H., 1994. Lake Ontario water quality trends, 1969–1992: Some observational nutrient-science for protecting a major and vulnerable source of drinking water. National Water Research Institute, Burlington, Canada. NWRI Contribution No. 94-58.

  13. Downing, J. A. & C. Plante, 1993. Production of fish populations in lakes. Can. J. Fish. Aquat. Sci. 50: 110–120.

  14. Flint, R. W. & R. J. J. Stevens, 1989. Lake Ontario: a Great Lake in transition. Great Lakes Program Publ. Monograph #2. SUNY Buffalo, Buffalo NY.

  15. Fontaine, T. & D. Stewart, 1992. Exploring the effects of multiple management objectives and exotic species on Great Lakes foodwebs and contaminant dynamics. Environmental Management 16(2): 225–229.

  16. Gray, I. M., 1987. Differences between nearshore and offshore phytoplankton communities in Lake Ontario. Can. J. Fish. Aquat. Sci. 44: 2155–2163.

  17. Hartig, J. H., J. F. Kitchell, D. Scavia & S. B. Brandt, 1987. Rehabilitation of Lake Ontario: the role of the nutrient reduction and foodweb dynamics. International Joint Commission (IJC). Windsor, Ontario, Canada.

  18. Hewett, S. W., 1989. Ecological applications of bioenergetics models. American Fisheries Society Symposium, 6: 113–120.

  19. Hydroscience, 1976. Assessment of the effects of nutrient loadings on Lake Ontario using a mathematical model of the phytoplankton. Report to the Great Lakes Water Quality Board, IJC, Windsor, Ontario, 116 pp.

  20. Jain, R. & J. V. DePinto, 1991. Lake Ontario nutrient cycle/Foodweb modeling. Proceedings of a workshop hosted by Great Lakes Program, State University of New York, Buffalo, NY.

  21. Johannsson, O. E. & R. O'Gorman, 1991. Roles of predation, food and temperature in structuring the epilimnetic zooplankton populations in Lake Ontario, 1981–1986. Trans. Am. Fish. Soc. 120: 193–208.

  22. Johannsson, O. E., E. L. Mills & R. O'Gorman, 1991. Changes in the nearshore and offshore zooplankton communities in Lake Ontario: 1981–88. Can. J. Fish. Aquat. Sci. 48: 1546–1557.

  23. Johannsson, O. E., 1987. Comparison of Lake Ontario zooplankton communities between 1967 and 1985: before and after implementation of salmonid stocking and phosphorus control. J. Great Lakes Res. 13(3): 328–339.

  24. Jones, M. L., J. F. Koonce & R. O'Gorman, 1993. Sustainability of hatchery-dependent salmonie fisheries in Lake Ontario: The conflict between predator demand and prey supply. Trans. Am. Fish. Soc. 122(5): 1002–1018.

  25. Kay, J. J., L. A. Graham & R. E. Ulanowicz, 1989. A detailed guide to network analysis. In: F. Wulff, J. G. Field & K. H. Mann (eds),Network Analysis in Marine Ecology. Methods and Applications. pp. 15–61. Springer-Verlag.

  26. Kitchell, J. F., D. J. Stewart & D. Weininger, 1977. Applications of a bioenergetics model to yellow perch (Perca flavescens) and walleye (Stizostedion vitreum vitreum). J. Fish. Res. Board Can. 34: 1922–1935.

  27. Lean, D. R. S., H.-J. Fricker, M. N. Charlton, R. L. Cuhel, & F. R. Pick, 1987. The Lake Ontario life support system. Can. J. Fish. Aquat. Sci. 44: 2230–2240.

  28. Loehr, R. C., C. S. Martin, & W. Rast, 1980. Phosphorus management strategies for lakes. Ann Arbor Science Publishers Inc., Ann Arbor, MI 48106.

  29. Matson, P A. & A. A. Berryman (eds), 1992. Ratio-dependent predator-prey theory. Ecology 73: 1529–1566.

  30. McQueen, D. J. & J. R. Post, 1988. Cascading trophic interactions: uncoupling at the zooplankton-phytoplankton link. Hydrobiologia 159: 277–296.

  31. McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic Relationships in freshwater pelagic ecosystems. Can. J. Fish. Aquat. Sci. 43: 1571–1581.

  32. Minns, C. K. 1992. Use of models for integrated assessment of ecosystem health. J. Aquatic Ecosystem Health 1(2): 109–118.

  33. Minns, C. K., V. W. Cairns, R. G. Randall & J. E. Moore. 1994. An index of biotic integrity (IBI) for fish assemblages in the littoral zone of Great Lakes' areas of concern. Can. J. Fish. Aquat. Sci. 51 (8): 1804–1822.

  34. Mitsch, W. J., 1993. Ecological engineering: a cooperative role with the planetary life-support system. Environ. Sci. Technol. 27(3): 438–444.

  35. O'Gorman, R. & C. P. Schneider, 1986. Dynamics of alewives in Lake Ontario following a mass mortality. Trans. Amer. Fish. Soc. 115(1): 1–14.

  36. Orsatti, S. D. and G. C. LeTendre, 1994. Lake Ontario stocking and marking program 1993. GLFC (Great Lakes Fishery Commission), Lake Ontario Committee meeting, Niagara Falls, Ontario, March 29–30,1994.

  37. Plante, C. & J. A. Downing, 1993. Relationship of salmonine production to lake trophic status and temperature. Can. J. Fish. Aquat. Sci. 50: 1324–1328.

  38. Rand, P. S., D. J. Stewart, P. W. Seelbach, M. L. Jones & L. R. Wedge, 1993. Modeling steelhead population energetics in Lakes Michigan and Ontario. Trans. Am. Fish. Soc. 122 (5): 977–1001.

  39. Rand, P S., D. J. Stewart, B. F Lantry, L. G. Rudstam, O. E. Johannsson, A. P. Goyke, S. B. Grandt, R. O'Gorman & G. W. Eck. Effect of whole-lake plantivory by the pelagic prey fish community in Lakes Michigan and Ontario. Can. J. Fish. Aquat. Sci. In press.

  40. Rapport, D. J., 1989. What constitutes ecosystem health? Perspectives in Biology and Medicine 33, 1: 120–132.

  41. Reynolds, C. S., 1984.The Ecology of Freshwater Phytoplankton. Cambridge University Press, London.

  42. Scavia, D., G. L. Fahnenstiel, M. S. Evans, D. J. Jude & J. T. Lehman, 1986. Influence of salmonine predation and weather on long-term water quality in Lake Michigan. Can. J. Fish. Aquatic Sci. 43: 435–443.

  43. Sherman, K., 1994. Sustainability, biomass yields, and health of coastal ecosytsems: an ecological perspective. Mar. Ecol. Prog. Ser. 112 (3): 277–301.

  44. Steedman, R. J., 1994. Ecosystem health as a management goal. Journal of the North American Benthological Society 13(4): 605–610.

  45. Stevens, R. J. J., 1988. A Review of Lake Ontario Water Quality with Emphasis on the 1981–1982 Intensive Years. A Report to the Surveillance Subcommittee of the Great Lakes Water Quality Board. International Joint Commission, Great Lakes Regional Office, Windsor.

  46. Stevens, R. J. J. & M. A. Neilson, 1987. Response of Lake Ontario to reductions in phosphorus load, 1967–82. Can. J. Fish. Aquat. Sci. 44: 2059–2068.

  47. Stewart, D. J., J. F. Kitchell & L. B. Crowder, 1981. Forage fishes and their salmonid predators in Lake Michigan. Transactions of the American Fisheries Society 110: 751–763.

  48. Suter, G. W. II, 1993. A critique of ecosystem health concepts and indexes. Environmental Toxicology and Chemistry 12(9): 1533–1539.

  49. Thomann, R. V., R. P. Winfield & J. J. Segna, 1979. Verification analysis of Lake Ontario and Rochester Embayment three dimensional eutrophication models. US Environmental Protection Agency, Duluth, Minnesota. EPA-600/3-79-094.

  50. Thomann, R. V. & J. A. Mueller, 1987. Principles of surface water quality modeling and control. Harper & Row, NY.

  51. Tilzer, M. M. & P. Bossard, 1992. Large lakes and their sustainable development. Aquatic Sciences. 54(2): 91–103.

  52. Ulanowicz, R. E., 1989. A generic simulation model for treating incomplete sets of data. In: F Wulff, J. G. Field, & K. H. Mann (eds),Network Analysis in Marine Ecology. Methods and Applications. pp. 84–89. Springer-Verlag.

  53. Vallentyne, J. R. & M. Munawar, 1993. From aquatic science to ecosystem health: a philosophical perspective. J. Aquatic Ecosystem Health 2(4): 231–236.

  54. Vollenweider, R. A., W. Rast & J. Kerekes, 1980. The phosphorus loading concept and Great Lakes eutrophication. In: R. C. Loehr, C. S. Martin & W. Rast (eds),Phosphorus Management Strategies for Lakes. Ann Arbor Science Publishers Inc., Ann Arbor, MI 48106.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jain, R., DePinto, J.V. Modeling as a tool to manage ecosystems under multiple stresses: an application to Lake Ontario. J Aquat Ecosyst Stress Recov 5, 23–40 (1996). https://doi.org/10.1007/BF00691727

Download citation

Keywords

  • ecosystem modeling
  • fishery management
  • organic carbon mass balance
  • stocking
  • phosphorus