Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Gastrin/cholecystokinin-like post-prandial variations: quantitative and qualitative changes in the haemolymph of penaeids (Crustacea Decapoda)

  • 21 Accesses

  • 8 Citations

Summary

Gastrin/cholecystokinin-like (G/CCK) peptides from the haemolymph of two penaeidsPenaeus japonicus andP. stylirostris (Crustacea, Decapoda) were characterized by gel filtration. In starved shrimps, four classes of peptides were found. One fraction elutes in the void volume, a second has a molecular weight around 5 kDa, a third between 1 and 2.5 kDa, and the fourth fraction is composed of very small peptides. Differences exist between the two species concerning the relative proportion of each molecule.

After a meal, there is a two-fold increase of total G/CCK-like peptides and marked qualitative changes are described. Briefly, high molecular weight fractions decrease while low molecular ones increase. After 5 h a return to the initial concentrations is observed. These changes are more pronounced inP. stylirostris. Such variations suggests a role for these peptides in regulation of crustacean digestive processes.

This is a preview of subscription content, log in to check access.

References

  1. Barrington EJ, Dockray GJ (1976) Gastrointestinal hormones. J Endocrinol 69:299–325

  2. Blair J, Richardson CT, Walsh JH, Feldman M (1987) Variable contribution of gastrin to gastric acid secretion after a meal in humans.Gastroenterology 92:944–949

  3. Larsson LI, Rehfeld JF (1977) Evidence for a common evalutionary origin of gastrin and cholecystokinin. Nature 269:335–338

  4. Calam J, Ellis A, Dockray CJ (1982) Identification and measurement of molecular variants of cholecystokinin in duodenal mucosa and plasma. J Clin Invest 69:218–225

  5. Cruz-Ricque LE (1987) Recherches sur la nature et le mode d'action d'un facteur de croissance extrait du calmar, dans la nutrition des crevettes Peneïdes (Crustacé Decapode). Thèse de l'Université de Bretagne Occidentale

  6. Cruz-Ricque LE, Guillaurne J, Van Wormhoudt A (1989) Effect of squid extracts on time course appearance of glucose and free amino acids in haemolymph inPenaeus japonicus after feeding: preliminary results. Aquaculture 76:57–65

  7. Denuce JM (1982) Do crustaceans react to mammalian gastrointestinal hormones? Preliminary experiments with cholecystokinin-pancreozymin (CCK-Pz) and secretion. Arch Int Physiol Bioch 90:B20

  8. Dockray GJ, Taylor IL (1976) Heptadecapeptide gastrin: measurement in blood by specific radioimmunoassay. Gastroenterology 71:971–977

  9. Eysselein VE, Maxwell V, Reedy T, Wunsch E, Walsh JH (1984) Similar acid stimulating potenties of synthetic human big and little gastrins in man. J Clin Invest 73:1284–1290

  10. Favrel P (1988) Purification et caractérisation biochimique de peptides immunologiquement apparentés aux Gastrines/Cholécystokinines chez quelques crustacés décapodes: Recherche d'un role biologique. Thèse de l'Université de Rennes I

  11. Favrel P, Van Wormhoudt A (1986) Gastrin/cholecystokinin like peptides inPalaemon serratus (Crustacea Decapoda). Bull Soc Zool Fr 111:21

  12. Favrel P, Van Wormhoudt A, Studler JM, Bellon C (1987) Immunochemical and biochemical characterization of Gastrin/Cholecystokinin-like peptides inPalaemon serratus (Crustacea Decapoda): intermolt variations. Gen Comp Endocrinol 65:363–372

  13. Fiddian-Green RG, Vinik AI (1983) The meaning of a gastrin response to a test meal. Surgery 94:1038–1042

  14. Lamers CB, Valenzuela JE, Walsh JB (1979) Demonstration of cholecystokinin (CCK-8)-like immunoractivity in the circulation of man after introduodenal fat. Gut 20:A925 (Abstract)

  15. Larsson LI, Rehfeld JF (1977) Evidence for a common evolutionary origin of gastrin and cholecystokinin. Nature (Lond) 269:335–338

  16. Larson BA, Vigna SR (1983) Gastrin/cholecystokinin-like immunoreactive peptides in the Dungeness crab,Cancer magister (Dana). Regul Peptides 7:155–170

  17. Liddle RA, Goldfine D, Williams JA (1984) Bioassay of plasma cholecystokinin in rats: effect of food, trypsin inhibitor and alcohol. Gastroenterology 87:542–549

  18. Liddle RA, Green GM, Conrad CK, Williams JA (1986) Protein but not amino acids, carbohydrates, or fats stimulate cholecystokinin secretion in the rat. Am J Physiol 25:G243-G248

  19. Nachman RJ, Holman GM, Haddon WF, Ling N (1986a) Leucosulfakinin, a sulfated insect neuropeptide with homology to gastrin and cholecystokinin. Science 234:71–73

  20. Nachman RJ, Holman GM, Cook BJ, Haddon WF, Ling N (1986b) Leucosulfakinin II, a blocked sulfated insect neuropeptide with homology to cholecystokinin and gastrin. Biochem Biophys Res Comm 140:357–364

  21. Rehfeld JF (1972) Three components of gastrin in human serum. Gel filtration studies on the molecular size of immunoreative serum gastrin. Biochem Biophys Acta 285:364–372

  22. Rehfeld JF (1981) Four basic characteristics of the gastrincholecystokinin system. Am J Physiol 240:G255-G265

  23. Rehfeld JF, Uvnas-Wallensten K (1978) Gastrin in cat and dog: evidence for a biosynthetic relationship between the large molecular forms of gastrin and heptadecapeptide gastrin. J Physiol 283:379–396

  24. Sedlmeier D (1988) The crustacean hyperglycemic hormone (CHH): releases amylase from the crayfish midgud gland. Regul Peptide 20:91–98

  25. Straus E, Yalow RS, Gainer H (1975) Molluscan gastrin: concentration and molecular forms. Science 195:687–689

  26. Talmage RV, Doppelt H, Cooper CW (1975) Relationship of blood concentration of calcium, phosphate, gastrin and calcitonin to the onset of feeding in the rat. Proc Soc Exp Biol Med 149:855–859

  27. Vigna SR, Thorndyke MC, Williams J (1986) Evidence for a common evolutionary origin of brain and pancreas cholecystokinin receptors. Proc Natl Acad Sci USA 83:4355–4359

  28. Walsh JH (1975) Biologic activity and disappearance rates of big, little and mini-gastrin in dog and man. In: Thompsons TC (ed) Gastrointestinal hormones. University of Texas Press, Austin, pp 75–83

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Van Wormhoudt, A., Favrel, P. & Guillaume, J. Gastrin/cholecystokinin-like post-prandial variations: quantitative and qualitative changes in the haemolymph of penaeids (Crustacea Decapoda). J Comp Physiol B 159, 269–273 (1989). https://doi.org/10.1007/BF00691504

Download citation

Key words

  • Penaeids
  • Haemolymph
  • Gastrin/Cholecystokinin
  • Post-prandial changes