Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Role of pyruvate kinase, phosphoenolpyruvate carboxykinase, malic enzyme and lactate dehydrogenase in anaerobic energy metabolism ofTubifex spec

  • 126 Accesses

  • 24 Citations


  1. 1.

    During anaerobic exposure ofTubifex, lactate and alanine increase only within the first 24 h, while concentrations of succinate, propionate and also acetate continually increase under prevailing anaerobic conditions. Enzymes involved in anaerobic energy metabolism were isolated, and the effects of various metabolites and inorganic compounds on their catalytic properties studied.

  2. 2.

    The specific activities of the cytosolic enzymes LDH, PK, MDH, and PEPCK, and of mitochondrial malic enzyme and MDH are high.

  3. 3.

    Under conditions of high HCO 3 (HCO 3 +CO2 system), PEPCK is maximally active while PK is inhibited.

  4. 4.

    The catalytic properties of mitochondrial malic enzyme indicate that in vivo this enzyme operates in the direction of malate decarboxylation.

  5. 5.

    The cytosolic oxidoreductases LDH and MDH were examined with regard to the maintenance of redox state. Function of MDH is only subject to substrate availability, while the enzyme-substrate affinity of LDH might be affected by pH to a limited extent.

  6. 6.

    The data support the conclusion that total CO2, fructose-1,6-diphosphate concentration, the adenylate energy charge, and-only to a limited extent-the intracellular pH are regulatory signals which govern PEP metabolism inTubifex.

This is a preview of subscription content, log in to check access.



adenylate energy charge




guanosine diphosphate


guanosine triphosphate


inosine diphosphate

TP :

inosine triphosphate


lactate dehydrogenase


mafate dehydrogenase




phosphoenolpyruvate carboxykinase

PK :

pyruvate kinase


triethanolamine buffer


  1. Alsterberg, G.: Die respiratorisehen Mechanismen der Tubificiden. Lunds Univ. Arsskr., Avd. 2 (N.S.)18, 1–27 (1922)

  2. Atkinson, D.E., Walton, G.M.: Adenosine triphosphate conservation in metabolic regulation. J. Biol. Chem.242, 3239–3241 (1967)

  3. Behning, A.: Das Leben der Wolga — Zugleich eine Einführung in die Flußbiologie. In: Die Binnengewässer, Bd. V; Thienemann, A., (ed.), pp. 22–25. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung 1928

  4. Bergmeyer, H.U.: Methoden der enzymatischen Analyse, 2. Aufl., Vol. II. Weinheim: Verlag Chemie 1971

  5. Bergmeyer, H.U.: Principles of Enzymatic Analysis, pp. 76–77. New York: Verlag Chemie 1978

  6. Black, J.A., Henderson, M.H.: Activation and inhibition of human erythrocyte pyruvate kinase by organic phosphates, amino acids, dipeptides and anions. Biochem. Biophys. Acta284, 115–127 (1972)

  7. Borgmann, U., Moon, T.W.: A comparison of lactate dehydrogenase from an ectothermic and an endothermic animal. Can. J. Biochem.53, 998–1004 (1975)

  8. Bücher, Th., Luh, W., Pette, D.: Einfache und zusammengesetzte optische Tests mit Pyridinnucleotiden. In: Hoppe-Seyler/Thierfelder: Handbuch der physiologischen und pathologisch-chemischen Analyse, 10. Auflage, Bd. VI/A. Lang, K., Lehnartz, E. (eds.), S. 292–339. Berlin, Göttingen, Heidelberg, New York: Springer 1964

  9. Chen, C., Awapara, J.: Intracellular distribution of enzymes catalyzing succinate production from glucose inRangia mantle. Comp. Biochem. Physiol.30, 727–737 (1969)

  10. Copper, T.G., Tchen, T.T., Wood, H.G., Benedict, C.R.: The carboxylation of phosphoenolpyruvate and pyruvate. I. The active species of “CO2” utilized by phosphoenolpyruvate carboxykinase, carboxytransphosphorylase and pyruvate carboxylase. J. Biol. Chem.243, 3857–3863 (1968)

  11. Dausend, K.: Über die Atmung der Tubificiden. Z. vergl. Physiol.14, 557–608 (1931)

  12. Hochachka, P.W., Mustafa, T.: Invertebrate facultative anaerobiosis. Science (Wash.)178, 1056–1060 (1972)

  13. Hochachka, P.W., Mustafa, T.: Enzymes in facultative anaerobiosis of molluscs. I. Malic enzyme of oyster adductor muscle. Comp. Biochem. Physiol.45B, 625–637 (1973)

  14. Hoffmann, K.H.: Catalytic efficiency and structural properties of invertebrate muscle pyruvate kinase: correlation with body temperature and oxygen consumption rates. J. Comp. Physiol.110, 185–195 (1976)

  15. Hoffmann, K.H.: The regulatory role of muscle pyruvate kinase in carbohydrate metabolism of invertebrates: A comparative study in catalytic properties of enzymes isolated fromTubifex tubifex (Oligochaeta) andTenebrio molitor (Coleoptera). Physiol. Zool.50, 142–155 (1977)

  16. Hutchinson, G.E.: A Tretise on Limnology, Vol. I. Carbon dioxide and hydrogen-ion concentration of lake waters. pp. 653–675. New York: Wiley 1957

  17. Kluytmans, J.H., de Bont, A.M.T., Wijsman, T.C.M.: Time-dependent changes and tissue specificities in the accumulation of anaerobic fermentation products in the sea musselMytilus edulis. Comp. Biochem. Physiol.58B, 181–187 (1977)

  18. Kornberg, A.: Methods in Enzymology, Vol. I. Colowick, S.P., Kaplan, N.O. (eds.), pp. 441–443. New York: Academic Press 1955

  19. Layne, E.: Spectrophotometric and turbidimetric methods for measuring proteins. In: Methods in Enzymology, Vol. III. Colowick, S.P., Kaplan, N.O. (eds.), pp. 451–455. New York: Academic Press 1957

  20. Liepolt, R.: Limnologie der Donau. IV. S. 51–83; V. S. 4–69. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung 1967

  21. Livingstone, D.R., Bayne, B.L.: Pyruvate kinase from the mantle tissue ofMytilus edulis. Comp. Biochem. Physiol.48B, 481–497 (1974)

  22. Lowry, O.H., Passonneau, J.V., Hasselberger, F.Y., Schulz, D.W.: The relationship between substrates and enzymes of glycolysis in brain. J. Biol. Chem.239, 31–41 (1964)

  23. Moon, T.W., Hulbert, W.C., Mustafa, T., Mettrick, D.F.: A study of lactate dehydrogenase and malate dehydrogenase in adultHymenolepis diminuta (Cestoda). Comp. Biochem. Physiol.56B, 249–254 (1977a)

  24. Moon, T.W., Mustafa, T., Hulbert, W.C., Podesta, R.B., Mettrick, D.F.: The phosphoenolpyruvate branchpoint in adultHymenolepis diminuta (Cestoda). A study of pyruvate kinase and phosphoenolpyruvate carboxykinase. J. Exp. Zool.200, 325–336 (1977b)

  25. Mustafa, T., Hochachka, P.W.: Enzymes in facultative anaerobiosis of molluscs. II. Basic catalytic properties of phosphoenolpyruvate carboxykinase in oyster adductor muscle. Comp. Biochem. Physiol.45B, 639–655 (1973)

  26. Rahaman, R., Meisner, H.: Respiratory studies with mitochondria from the rat tapewormHymenolepis diminuta. Int. J. Biochem.4, 153–162 (1973)

  27. Schöttler, U.: The energy yielding oxidation of NADH by fumarate in anaerobic mitochondria ofTubifex. Comp. Biochem. Physiol.58B, 151–156 (1977a)

  28. Schöttler, U.: NADH generating reactions in anaerobicTubifex mitochondria. Comp. Biochem. Physiol.58B, 261–265 (1977b)

  29. Schöttler, U.: The influence of anaerobiosis on the levels of adenosine nucleotides and some glycolytic metabolites inTubifex sp. (Annelida, Oligochaeta). Comp. Biochem. Physiol.61B, 29–32 (1978)

  30. Schöttler, U., Schroff, G.: Untersuchungen zum anaeroben Glykogenabbau beiTubifex tubifex. J. Comp. Physiol.108, 243–254 (1976)

  31. Seuß, J.: Katalytische Eigenschaften der PEPCK vonTubifex spec. (Oligochaeta). Diplomarbeit, Erlangen (1978)

  32. Zwaan, A. de, Holwerda, D.A.: The effect of phosphoenolpyruvate, fructose-1,6-diphosphate and pH on allosteric pyruvate kinase in muscle tissue of the bivalveMytilus edulis. Biochem. Biophys. Acta276, 430–433 (1972)

  33. Zwaan, A. de, Wijsman, T.C.M.: Anaerobic metabolism in bivalvia (Mollusca). Characteristics of anaerobic metabolism. Comp. Biochem. Physiol.54B, 313–324 (1976)

  34. Zebe, E.: Anaerobe Stoffwechsel bei wirbellosen Tieren Rheinisch-Westfälische Akademie der Wissenschaften, Vorträge N 269 (1977)

Download references

Author information

Correspondence to K. H. Hoffmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoffmann, K.H., Mustafa, T. & Jørgensen, J.B. Role of pyruvate kinase, phosphoenolpyruvate carboxykinase, malic enzyme and lactate dehydrogenase in anaerobic energy metabolism ofTubifex spec. J Comp Physiol B 130, 337–345 (1979). https://doi.org/10.1007/BF00689852

Download citation


  • Catalytic Property
  • Oxidoreductase
  • Pyruvate Kinase
  • Phosphoenolpyruvate
  • Malic Enzyme