Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Acetate assimilation and the synthesis of alanine, aspartate and glutamate inMethanobacterium thermoautotrophicum

Abstract

Cultures of the autotrophic bacteriumMethanobacterium thermoautotrophicum were shown to assimilate acetate when grown on CO2 and H2 in the presence of acetate. At 1 mM acetate 10% of the cell carbon came from acetate, the rest from CO2. At higher concentrations the percentage increased to reach a maximum of 65%at acetate concentrations higher than 20 mM. The data suggest that acetate may be an important carbon source under physiological conditions.

The incorporation of acetate into alanine, aspartate and glutamate was studied in more detail. The cells were grown on CO2 and H2 in the presence of 1 mM U-14C-acetate. The three amino acids were isolated from the labelled cells by a simplified procedure. Alanine, aspartate and glutamate were found to have the same specific radioactivity. Degradation studies showed that C1 of alanine C1 and C4 of aspartate, and C1 and C5 of glutamate were exclusively derived from CO2, whereas C2 and C3 alamine and aspartate, and C3 and C4 of glutamate were partially derived from acetate. These findings and the presence of pyruvate synthase, phosphoenolpyruvate carboxylase and α-ketoglutarate synthase inM. thermoautotrophicum indicate that CO2 is assimilated into the three amino acids via acetyl CoA carboxylation to pyruvate, phosphoenolpyruvate carboxylation to oxaloacetate, and succinyl CoA carboxylation to α-ketoglutarate.

This is a preview of subscription content, log in to check access.

References

  1. Andrew, I. G., Morris, J. G.: The biosynthesis of alanine byClostridium kluyveri. Biochim. Biophys. Acta97, 176–179 (1965)

  2. Aronoff, S.: Techniques of radiobiochemistry, p. 141. Iowa: Iowa State College Press 1956

  3. Bray, G. A.: A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Anal. Biochem.1, 279–285 (1960)

  4. Bryant, M. P., Tzeng, S. F., Robinson, I. M., Joyner, A. E.: Nutrient requirements of methanogenic bacteria. In: Anaerobic treatment processes. Advances in chemistry, Vol. 105 (F. G. Pohland, ed.), pp. 23–40. Washington, D. C.: Amer. Chem. Soc. 1971

  5. Buchanan, B. B.: Ferredoxin and carbon assimilation. In: Iron sulfur proteins, Vol. 1 (W. Lovenberg, ed.), pp. 129–150. New York-London: Academic Press 1973

  6. Cutinelli, C., Ehrensvärd, G., Högström, G., Reio, L., Saluste, E., Sternholm, R.: Acetic acid metabolism inRhodospirillum rubrum under anaerobic conditions. Ark. Kemi3, 501–509 (1951)

  7. Daniels, L., Zeikus, J. G.: Abstr. Annu. Meet. Am. Soc. Microbiol.158, p. 121 (1976)

  8. Gottschalk, G.: The stereospecificity of the citrate synthase in sulfate-reducing and photosynthetic bacteria. Eur. J. Biochem.5, 346–351 (1968)

  9. Gottschalk, G., Barker, H. A.: Synthesis of glutamate and citrate byClostridium kluyveri. A new type of citrate synthase. Biochemistry5, 1125–1133 (1966)

  10. Grassl, M.: Alanin-Bestimmung mit GPT und LDH. In: Methoden der enzymatischen Analyse. Vol. 2 (H. U. Bergmeyer, ed.), pp. 1637–1640. Weinheim: Verlag Chemie 1970

  11. Hoare, D. S.: The photoassimilation of acetate byRhodospirillum rubrum. Biochem. J.87, 284–301 (1963)

  12. Hoare, D. S., Gibson, J.: Photoassimilation of acetate and the biosynthesis of amino acids byChlorobium thiosulfatophilum. Biochem. J.91, 546–559 (1964)

  13. Hohorst, H.-J.:l-(+)-Lactat-Bestimmung mit Lactat-Dehydrogenase und NAD. In: Methoden der enzymatischen Analyse, Vol. 2 (H. U. Bergmeyer, ed.), pp. 1425–1429. Weinheim: Verlag Chemie 1970

  14. Hungate, R. E.: A roll tube method for cultivation of strict anaerobs. In: Methods in Microbiology, Vol. 3B (J. R. Norris, D. W. Ribbons, eds.), pp. 117–132. New York-London: Academic Press 1969

  15. Jungermann, K., Thauer, R. K., Wenning, J., Decker, K.: Confirmation of unusual stereochemistry of glutamate biosynthesis inClostridium kluyveri. FEBS Letters1, 74–76 (1968)

  16. Kedenburg, C. P.: Lithium buffer system for accelerated singlecolumn amino acid analysis in physiological fluids. Anal. Biochem.40, 35–42 (1971)

  17. Kelly, D. P.: The incorporation of acetate by the chemoautotrophThiobacillus neapolitanus strain C. Arch. Mikrobiol.58, 99–116 (1967)

  18. Kemble, A. R., Macpherson, H. T.: Determination of monoamino monocarboxylic acids by quantitative paper chromatography. Biochem. J.56, 548–555 (1954)

  19. Ljungdahl, L. G., Wood, H. G.: Total synthesis of acetate from CO2 by heterotrophic bacteria. Ann. Rev. Microbiol.23, 515–538 (1969)

  20. Roberts, R. B., Abelson, P. H., Cowie, D. B., Bolton, E. T., Britton, R. J.: Studies of biosynthesis inEscherichia coli. Carnegie Institute. Washington (1957)

  21. Stegemann, H.: Bestimmung von Aminosäuren mit dithionitreduziertem Ninhydrin. Hoppe-Seyler's Z. Physiol. Chem.319, 102–109 (1960)

  22. Simon, H., Floss, H. G.: Anwendung von Isotopen in der organischen Chemie und Biochemie, Vol. 2, pp. 23ff., 50ff. Berlin-Heidelberg-New York: Springer 1967

  23. Taylor, G. T., Kelley, D. P., Pirt, S. J.: Intermediary metabolism in methanogenic bacteria. In: Proceedings of the Symposium “Microbial production and utilization of gases (H2, CH4, CO)” (H. G. Schlegel, G. Gottschalk, N. Pfennig, eds.), pp. 173–180, Akademie der Wissenschaften zu Göttingen. Göttingen: Goltze 1976

  24. Thauer, R. K., Jungermann, K., Wenning, J., Decker, K.: Characterization of crotonate grownClostridium kluyveri by its assimilatory metabolism. Arch. Mikrobiol.64, 125–129 (1968)

  25. Tomlinson, N.: Carbon dioxide and acetate utilization byClostridium kluyveri. II. Synthesis of amino acids. J. Biol. Chem.209, 597–603 (1954a)

  26. Tomlinson, N.: Carbondioxide and acetate utilization byClostridium kluyveri. III. A new path of glutamic acid synthesis. J. Biol. Chem.209, 605–609 (1954b)

  27. Tomlinson, N., Barker, H. A.: Carbon dioxide and acetate utilization byClostridium kluyveri. I. Influence of nutritional conditions on utilization patterns. J. Biol. Chem.209, 585–595 (1954)

  28. Zeikus, J. G.: The biology of methanogenic bacteria. Bact. Rev.41, 514–541 (1977)

  29. Zeikus, J. G., Fuchs, G., Kenealy, W., Thauer, R. K.: Oxidoreductases involved in cell carbon synthesis ofMethanobacterium thermoautotrophicum. J. Bacteriol.132, 604–613 (1977)

  30. Zeikus, J. G., Weimer, P. J., Nelson, D. R., Daniels, L.: Bacterial methanogenesis: Acetate as a methane precursor in pure culture. Arch. Microbiol.104, 129–134 (1975)

  31. Zeikus, J. G., Wolfe, R. S.:Methanobacterium thermoautotrophicum sp. n., an anaerobic, autotrophic, extreme thermophile. J. Bacteriol.109, 707–713 (1972)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fuchs, G., Stupperich, E. & Thauer, R.K. Acetate assimilation and the synthesis of alanine, aspartate and glutamate inMethanobacterium thermoautotrophicum . Arch. Microbiol. 117, 61–66 (1978). https://doi.org/10.1007/BF00689352

Download citation

Key words

  • Methanobacterium thermoautotrophicum
  • Acetate assimilation
  • Amino acid synthesis
  • Pyruvate synthesis
  • α-Ketoglutarate synthesis
  • Glutamate synthesis
  • Autotrophic CO2 fixation