Archives of Microbiology

, Volume 117, Issue 1, pp 21–26 | Cite as

An assessment of growth yields and energy coupling inDesulfovibrio

  • Edward L. MageeJr.
  • Burt D. Ensley
  • Larry L. Barton


The yield coefficients forDesulfovibrio vulgaris andD. gigas varied with the electron donoracceptor combinations and with the bacterial strain. The only evidence for electron transport coupled formation of adenosine triphosphate (ATP) was with sulfate as the electron acceptor. WithD. vulgaris the ATP formation coupling to electron flow with pyruvate oxidation was 1:4 electrons and with lactate oxidation was 1:8 electrons. WithD. gigas these ratios were 1:8 electrons and 1:16 electrons for the oxidation of pyruvate and lactate. The clearest resolution of energy coupling was withD. vulgaris growing on formatesulfate medium where 2 ATP appear to be formed with the transfer of electrons from formate to adenosine phosphosulfate and one ATP with the transfer of electrons from formate to sulfite.

Key words

Desulfovibrio Growth yields Anaerobic Bioenergetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, D. E.: The energy charge of the adenylate pool as a regulatory parameter. Biochem.7, 535–554 (1968)Google Scholar
  2. Baker, S., Summerson, W.: The colorimetric determination of lactic acid in biological material. J. Biol. Chem.138, 535–554 (1941)Google Scholar
  3. Barton, L. L., LeGall, J., Peck, H. D., Jr.: Oxidative phosphorylation in the obligate anaerobe,Desulfovibrio gigas. In: Horizons of bioenergetics (A. San Pietro, H. Gest, eds.), pp. 33–51. New York: Academic Press 1972Google Scholar
  4. Bauchop, T., Elsden, S. R.: The growth of micro-organisms in relation to their energy supply. J. Gen. Microbiol.23, 457–469 (1960)Google Scholar
  5. Burton, K.: Energy of adenosine triphosphate. Nature181, 1594–1595 (1958)Google Scholar
  6. Decker, K., Jungermann, K., Thauer, R. K.: Energy production in anaerobic organisms. Angew. Chem. Internat. Edit.9, 138–158 (1970)Google Scholar
  7. Dickerson, R. E., Timkovich, R.: Cytochromec. In: The enzymes, Vol. XI, oxidation reduction, part A (P. D. Boyer, ed.), pp. 397–547. New York: Academic Press 1975Google Scholar
  8. Forrest, W. W.: Energetic aspects of microbial growth. In: Microbial growth. Nineteenth Symposium of the Society for General Microbiology, pp. 65–86. Cambridge: The University Press 1969Google Scholar
  9. Friedman, T., Haugen, G.: Pyruvic acid. II. The determination of keto acids in blood and urine. J. Biol. Chem.147, 415–443 (1943)Google Scholar
  10. Grant, W.: Colorimetric microdetermination of formate. In: Methods of enzymology, Vol. 3 (S. Colowich, N. Kaplan, eds.), pp. 287–289. New York: Academic Press 1957Google Scholar
  11. Gunsalus, I. C., Shuster, C. W.: Energy-yielding metabolism in bacteria. In: The bacteria, Vol. 2 (I. C. Gunsalus, R. Y. Stanier, eds.), pp. 1–51. New York: Academic Press 1961Google Scholar
  12. Khosrovi, B., Miller, J. P.: A comparison of the growth ofDesulfovibrio vulgaris under a hydrogen and under an inert atmosphere. Plant Soil43, 171–187 (1975)Google Scholar
  13. Lees, H.: Biochemistry of autotrophic bacteria, 112 pp. London: Butterworth 1955Google Scholar
  14. LeGall, J., Postgage, J. R.: The physiology of sulfate-reducing bacteria. Adv. Microbial Physiol.10, 81–133 (1973)Google Scholar
  15. Millet, J.: Degradation anaerobic du pyruvate par un extrait enzymatique deDesulfovibrio desulfuricans. Compt. Rend.238, 408–411 (1954)Google Scholar
  16. Payne, W. J.: Energy yields and growth of heterotrophs. Ann. Rev. Microbiol.18, 17–49 (1970)Google Scholar
  17. Peck, H. D., Jr.: The ATP-dependent reduction of sulfate with hydrogen in extracts ofDesulfovibrio desulfuricans. Proc. Nat. Acad. Sci. U.S.A.45, 701–708 (1959)Google Scholar
  18. Peck, H. D., Jr.: Phosphorylation coupled with electron transport in extracts of the sulfate reducing bacterium,Desulfovibrio gigas. Biochem. Biophys. Res. Commun.22, 112–118 (1966)Google Scholar
  19. Pirt, S. J.: Maintenance energy of bacteria in growing cultures. Proc. Roy. Soc. (Lond.) B163, 224–234 (1965)Google Scholar
  20. Postgate, J. R.: On the nutrition ofDesulfovibrio desulphuricans. J. Gen. Microbiol.5, 714–724 (1951)Google Scholar
  21. Postgate, J. R.: Recent advances in the study of the sulfatereducing bacteria. Bacteriol. Rev.29, 425–441 (1965)Google Scholar
  22. Senez, J. C.: Some considerations on the energetics of bacterial growth. Bacteriol. Rev.26, 95–107 (1962)Google Scholar
  23. Stouthamer, A. H.: Determination and significance of molar growth yields. In: Methods in microbiology, Vol. 1 (J. R. Norris, D. W. Ribbons, eds.), pp. 630–663. New York: Academic Press 1969Google Scholar
  24. Vosjan, J. H.: ATP generation by electron transport inDesulfovibrio desulfuricans. Antonie van Leeuvenhoek. J. Microbiol. Serol.36, 584–586 (1970)Google Scholar
  25. Vosjan, J. H.: Respiration and fermentation of the sulfate reducing bacteriumDesulfovibrio desulfuricans in a continuous culture. Plant Soil43, 141–152 (1975)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Edward L. MageeJr.
    • 1
  • Burt D. Ensley
    • 1
  • Larry L. Barton
    • 1
  1. 1.Department of BiologyUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations