Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Histopathological diagnosis of brain tumours with the help of a computer: mathematical fundaments and practical application

Summary

With the help of a personal computer we have subjected 1684 tumours of the central and peripheral nervous systems to a discriminant analysis to test whether the different brain tumours can be classified. By ascribing a coefficient value which belongs to a linear function to the objective criteria for each tumour these can be ordered in groups, and a classification is then possible. This has been termed discriminant analysis. Fifty histological characteristics were the criteria taken into consideration for each tumour. By using Bayes' formula with a correction for binomial distribution we obtained a correct diagnosis in 98% of the cases studied. The differential diagnosis with its percentage of probabilities is given by the computer. The mathematical fundaments are given. The valuability and precision of this method are discussed.

This is a preview of subscription content, log in to check access.

References

  1. Bairati A (1962) Nature et structure submicroscopique des fibres gliales chez l'homme. In: Jacob H (ed) Elektronenmikroskopie und Zellbiologie. Proceedings of the IV International Congress of Neuropathology, vol 2. Georg Thieme, Stuttgart, pp 38–42

  2. Boulay G du, Price VE (1968) The diagnosis of intracranial tumours assisted by computer. Br J Radiol 41:762–781

  3. Boulay G du, Price VE (1971) Selecting the next neuroradiological investigation with the help of a computer. Br J Radiol 44:416–421

  4. Boulay G du, Teather D, Harling D, Clarke G (1977) Improvement in the computer-assisted diagnosis of cerebral tumours. Br J Radiol 50:849–854

  5. Escudero LF (1977) Reconocimiento de patrones. Paraninfo SA, Madrid, pp 1–688

  6. Gross G (1969) Medizinische Diagnostik. Grundlagen und Praxis. Springer, Berlin Heidelberg New York, pp 1–218

  7. Henschen F (1955) Tumoren des Zentralnervensystems und seiner Hüllen. In: Scholz W (ed) Handbuch der speziellen pathologischen Anatomie und Histologie, vol 13. Springer, Berlin Göttingen Heidelberg, pp 413–1040

  8. Iglesias JR, Sanchez MJ, Sendra A, Mohnhaupt A (1983) Computer model of archive and diagnosis of brain tumours based on the WHO-classification. EDV Med Biol 14:40–44

  9. Iglesias JR, Kazner E, Aruffo C, Esparza J (1985) CT diagnosis of brain tumours: semiautomatical type-specific diagnosis with the help of a personal computer. Mathematical fundaments and practical application. In: Lemke HU, Rhodes ML, Jaffee CC, Felix R (eds) Computerized assisted radiology. Springer, Berlin, pp 443–448

  10. Iglesias JR, Kazner E, Aruffo C, Esparza J (1986) A model of semiautomatical type-specific diagnosis of brain tumours. Mathematical fundaments and practical application. Br J Radiol (in press)

  11. Jänisch W, Güthert H, Schreiber D (1976) Pathologie der Tumoren des Zentralnervensystems, VEB Gustav Fischer, Jena, pp 17–555

  12. Jellinger K, Machacek E (1982) Rare intracranial tumours in infancy and childhood. In: Voth D, Gutjahr P, Langmaid C (eds) Tumours of the central nervous system in infancy and childhood. Springer, Berlin Heidelberg New York, pp 44–52

  13. Kolberg T, Virnich H, Winkler C (1974) Präoperative Diagnostik hirnorganischer Prozesse mit Hilfe eines Computerprogramms. Acta Neurochir (Wien) 31:23–28

  14. Lange HJ (1969) Möglichkeiten und Grezen der sogenannten Computerdiagnostic. Datenverarb Med 4:2473–2479

  15. Lusted L (1968) Introduction to medical decision making. Pergamon, New York, pp 1–271

  16. Mai N, Hachmann E, Henrich G, Ramon DV, Brinkmann R (1977) Indikationsstellung für zerebrale Angiographie. Entwicklung eines Bayesprogramms zur Entscheidungshilfe. Methods Inf Med 16:45–51

  17. McNeil BJ, Keeler E, Adelstein SJ (1975) Primer of certain elements of medical decision making. N Engl J Med 293:211–215

  18. Peiffer J (1984) Tumoren des Nervensystems. In: Remmele W von (ed) Pathologie. 4. Neuropathologie, Sinnesorgane, Muskulatur, Angeborene Stoffwechselkrankheiten. Springer, Berlin Heidelberg New York Tokyo, pp 247–287

  19. Rioux P, Nakache JP (1979) Discriminant analysis. Methods and Program. Comput Programs Biomed 10:43–47

  20. Rotte KH (1979) Zur Anwendung der computergestützten Röntgendiagnostik in der Onkologie. Arch Geschwulstforsch 49:347–356

  21. Rubinstein LJ (1972) Tumours of the central nervous system. Atlas of tumor pathology, 2nd Series, Fasc 6. Armed Forces Institute of Pathology, Washington DC, pp 1–400

  22. Scholman HJ, Pfannkuch F, Iglesias JR, Brinnel Chr (1984) Microcomputer als Hilfsmittel in der Zytologischen Diagnostik und bei Erstellung von Befundberichten. Verh Dtsch Ges Pathol 68:428

  23. Schröder R, Müller W, Bonis G, Vorreith M (1970) Statistische Beiträge zum Grading der Gliome. III. Astrozytome und Oligodendrogliome. Acta Neurochir (Wien) 23:1–29

  24. Späth H (1977) Cluster-Analyse-Algorithmen zur Objektklassifizierung und Datenreduktion. R. Oldenburg, München Wien, pp 9–217

  25. Steinhausen D, Langer K (1977) Clusteranalyse. Einführung in Methoden und Verfahren der automatischen Klassifikation. Walter de Gruyter, Berlin, pp 11–206

  26. Stewart A, Cala LA (1975) Mathematical method to utilize a computer for diagnosis of site and type of intracerebral mass lesions. Br J Radiol 48:97–100

  27. Virnich H, Kolberg T, Winckler C (1975) CEDI — ein Computerprogramm zur präoperativen Artdiagnostik hirnorganischer Prozesse. Methods Inf Med 14:19–25

  28. Willis K, Boulay GH de, Teather B (1981) Initial findings in the computer-aided diagnosis of cerebral tumours using CT scan results. Br J Radiol 54:948–952

  29. Willis K, Teather D, Boulay GH du (1982) An improvement in computer-aided diagnosis of meningiomas after CT. Neuroradiology 22:255–257

  30. Zülch KJ (1956) Handbuch der Neurochirurgie. Biologie und Pathologie der Hirngeschwülste, vol 3. Springer, Berlin, pp 1–702

  31. Zülch KJ (1981) Historical development of the classification of brain tumours and the new proposal of the World Health Organization (WHO). Neurosurg Rev 4:123–127

Download references

Author information

Correspondence to J. R. Iglesias.

Additional information

IIBM-UNAM Mexico

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iglesias, J.R., Pfannkuch, F., Aruffo, C. et al. Histopathological diagnosis of brain tumours with the help of a computer: mathematical fundaments and practical application. Acta Neuropathol 71, 130–135 (1986). https://doi.org/10.1007/BF00687974

Download citation

Key words

  • Brain tumours
  • Histopathology
  • Data-processing in medicine
  • Computer assistance
  • Discriminant analysis