Journal of Materials Science

, Volume 31, Issue 10, pp 2531–2538 | Cite as

The use of force modulation microscopy to investigate block copolymer morphology

  • J. T. Chen
  • E. L. Thomas


Force modulation microscopy (FMM) is used to characterize the external surface and internal fracture surface morphologies of three different block copolymer samples. A roll-cast poly(styrene-butadiene-styrene) triblock copolymer film, spin-coated poly(styrene-b-methyl methacrylate) thin films, and an ultrathin poly(styrene-b-hexyl isocyanate) rod-coil block copolymer film were investigated. For each sample, height and elasticity images were obtained for the same areas allowing direct comparison. The elasticity images obtained using force modulation microscopy were independent of surface roughness and found to exhibit better contrast and spatial resolution of the respective block copolymer domains than the height images. The lateral resolution of the elasticity images was sufficient to show microphase separated domains having length scales as small as about 10 nm. The poly(styrene-b-methyl methacrylate) samples demonstrate that FMM can even be successfully used to study block copolymers in which both blocks are glassy under the conditions of measurement.


Block Copolymer Isocyanate Triblock Copolymer Copolymer Film Fracture Surface Morphology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. L. THOMAS, in “The Encyclopedia of Polymer Science and Engineering”, Vol. 5, edited by J. I. Kroschwitz (John Wiley, New York, 1986) p. 644.Google Scholar
  2. 2.
    D. L. VEZIE, E. L. THOMAS and W. W. ADAMS,Polymer 36 (1995) 1761.CrossRefGoogle Scholar
  3. 3.
    D. W. SCHWARK, D. L. VEZIE, J. R. REFFNER, E. L. THOMAS and B. K. ANNIS,J. Mater. Sci. Lett. 11 (1992) 352.CrossRefGoogle Scholar
  4. 4.
    B. K. ANNIS, D. L. SCHWARK, J. R. REFFNER, E. L. THOMAS and B. WUNDERLICH,Makromol. Chem. 193 (1992) 2589.CrossRefGoogle Scholar
  5. 5.
    B. COLLIN, D. CHATENAY, G. COULON, D. AUSSERRE and Y. GALLOT,Macromolecules 25 (1992) 1621.CrossRefGoogle Scholar
  6. 6.
    J. FROMMER,Angew. Chem. Int. Ed. Engl. 31 (1992) 1298.CrossRefGoogle Scholar
  7. 7.
    P. MAIVALD, H. J. BUTT, S. A. C. GOULD, C. B. PRATER, B. DRAKE, J. A. GURLEY, V. B. ELINGS and P. K. HANSMA,Nanotechnology 2 (1991) 103.CrossRefGoogle Scholar
  8. 8.
    M. RADMACHER, R. W. TILLMANN, M. FRITZ and H. E. GAUB,Science 257 (1992) 1900.CrossRefGoogle Scholar
  9. 9.
    M. RADMACHER, R. W. TILLMANN and H. E. GAUB,Biophys. J. 64 (1993) 735.CrossRefGoogle Scholar
  10. 10.
    E.-L. FLORIN, M. RADMACHER, B. FLECK and H. E. GAUB,Rev. Sci. Instrum. 65 (1994) 639.CrossRefGoogle Scholar
  11. 11.
    R. M. OVERNEY, T. BONNER, E. MEYER, M. RUETSCHI, R. LUTHI, L. HOWALD, J. FROMMER, H.-J. GUNTHERODT, M. FUJIHARA and H. TAKANO,J. Vac. Sci. Technol. B 12 (1994) 1973.CrossRefGoogle Scholar
  12. 12.
    T. KAJIYAMA, K. TANAKA, I. OHKI, S.-R. GE, J.-S. YOON and A. TAKAHARA,Macromolecules 27 (1994) 7932.CrossRefGoogle Scholar
  13. 13.
    R. M. OVERNEY, E. MEYER, J. FROMMER, H.-J. GUNTHERODT, M. FUJIHARA, H. TAKANO and Y. GOTOH,Langmuir 10 (1994) 1281.CrossRefGoogle Scholar
  14. 14.
    G. BINNIG, C. F. QUATE and C. GERBER,Phys. Rev. Lett. 56 (1986) 930.CrossRefGoogle Scholar
  15. 15.
    Digital Instruments, Inc. Nanoscope III Command Reference Manual, Version 3.0 (December 21, 1993) p. 35.Google Scholar
  16. 16.
    J. B. PETHICA and W. C. OLIVER,Physica Scripta T19 (1987) 61.CrossRefGoogle Scholar
  17. 17.
    R. J. ALBALAK and E. L. THOMAS,J. Polym. Sci. Polym. Phys. Edn 31 (1993) 37.CrossRefGoogle Scholar
  18. 18.
    Idem., ibid. 32 (1994) 341.CrossRefGoogle Scholar
  19. 19.
    J. T. CHEN, E. L. THOMAS, C. K. OBER and S. S. HWANG,Macromolecules 28 (1995) 1688.CrossRefGoogle Scholar
  20. 20.
    R. J. ALBALAK, unpublished work.Google Scholar
  21. 21.
    Idem., Polymer 35 (1994) 4115.CrossRefGoogle Scholar
  22. 22.
    B. MAXWELL,J. Polym. Sci. 20 (1956) 551.CrossRefGoogle Scholar
  23. 23.
    W. LETHERSICH,Brit. J. Appl. Phys. 1 (1950) 294.CrossRefGoogle Scholar
  24. 24.
    H. WRIGHT, C. S. N. FARADAY, E. F. T. WHITE and L. R. G. TRELOAR,J. Phys. D: Appl. Phys. 4 (1971) 2002.CrossRefGoogle Scholar
  25. 25.
    C. CRETON, E. J. KRAMER, C.-Y. HUI and H. R. BROWN,Macromolecules 25 (1992) 3075.CrossRefGoogle Scholar
  26. 26.
    G. COULON, T. P. RUSSELL, V. R. DELINE and P. F. GREEN,ibid. 22 (1989) 2581.CrossRefGoogle Scholar
  27. 27.
    T. P. RUSSELL, A. M. MAYES and M. S. KUNZ,“Ordering in macromolecular systems”, edited by A. Teramoto, M. Kobayashi and T. Norisuje (Springer-Verlag, Berlin, 1994) p. 217.CrossRefGoogle Scholar
  28. 28.
    M. N. BERGER,J. Macromol. Sci.-Revs. Macromol. Chem. C9 (1973) 269.CrossRefGoogle Scholar
  29. 29.
    A. I. BUR and L. I. FETTERS,Chem. Revs. 76 (1976) 727.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • J. T. Chen
    • 1
  • E. L. Thomas
    • 1
  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations