Journal of Materials Science

, Volume 31, Issue 10, pp 2523–2529 | Cite as

Effect of thermal residual stress on the crack path in adhesively bonded joints

  • H. R. Daghyani
  • L. Ye
  • Y. -W. Mai


Mode I fracture behaviour of adhesively bonded double and cantilever beam (DCB) compact tension (CT) joints was studied using a rubber-modified epoxy (Araldite® GY260) as the adhesive. Adherends were prepared from a carbon fibre (CF)/epoxy composite or aluminium alloys. The crack path in the joints was studied based on the sign of the non-singularT-stress ahead of the crack tip by calculating the thermal residual stress in the joints using finite element analysis. The results indicate that the type of adherend materials influence the level of the thermal residual stress in the adhesive layer, which consequently causes different crack paths in the joints, i.e. a uniformly smooth fracture surface in both CT and DCB aluminium joints and a wavy crack growth in the DCB CF/epoxy composite joints. However, the fracture energies of different types of adhesive joints were almost identical to each other for bond thicknesst<0.2 mm, and a somewhat higher fracture resistance was obtained for the CF/epoxy DCB joints with large bond thickness.


Aluminium Alloy Cantilever Beam Crack Path Adhesive Layer Fracture Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. R. AKISANYA and N. A. FLECK,Int. J. Fract. 58 (1992) 93.CrossRefGoogle Scholar
  2. 2.
    M. CHARALAMBIDES, A. J. KINLOCH, Y. WANG and J. G. WILLIAMS,ibid. 54 (1992) 269.Google Scholar
  3. 3.
    N. A. FLECK, J. W. HUTCHINSON and Z. SUO,Int. J. Solids Struct. 27 (1991) 1683.CrossRefGoogle Scholar
  4. 4.
    A. R. AKISANYA and N. A. FLECK,Int. J. Fract. 55 (1992) 29.CrossRefGoogle Scholar
  5. 5.
    H. CHAI,ibid. 32 (1987) 211.CrossRefGoogle Scholar
  6. 6.
    J. S. WANG and Z. SUO,Acta Metall. 38 (1990) 1279.CrossRefGoogle Scholar
  7. 7.
    H. R. DAGHYANI, L. YE and Y.-W. MAI,J. Compos. Mater. (1996) in press.Google Scholar
  8. 8.
    H. C. CAO and A. G. EVANS,Mech. Mater. 7 (1989) 295.CrossRefGoogle Scholar
  9. 9.
    M. D. THOULESS,Acta Metall. 38 (1990) 1135.CrossRefGoogle Scholar
  10. 10.
    H. DAGHYANI, L. YE and Y.-W. MAI,J. Adhesion 53 (1995) 149.CrossRefGoogle Scholar
  11. 11.
    Idem, ibid.,53 (1995) 163.CrossRefGoogle Scholar
  12. 12.
    Idem, ibid., (1996) in press.Google Scholar
  13. 13.
    H. R. DAGHYANI, L. YE, Y.-W. MAI and J. WU,J. Mater. Sci. Lett. 13 (1994) 1330.CrossRefGoogle Scholar
  14. 14.
    R. F. WEGMAN, in “Surface Preparation Techniques for Adhesive Bonding” (Noyes, 1989) pp. 9–27.Google Scholar
  15. 15.
    J. DUNDURS,J. Appl. Mech. 36 (1969) 650.CrossRefGoogle Scholar
  16. 16.
    M.-Y. HE and J. W. HUTCHINSON,J. Appl. Mech. 56 (1989) 270.CrossRefGoogle Scholar
  17. 17.
    K. M. LIECHTI and Y. S. CHAI,ibid. 59 (1992) 295.CrossRefGoogle Scholar
  18. 18.
    B. COTTERELL and J. R. RICE,Int. J. Fract. 16 (1980) 155.CrossRefGoogle Scholar
  19. 19.
    “Fracture Strength in Clevage of Adhesives in Bonded Joints”, ASTM-D3433-75, Annual Book of ASTM Standards (American Society for Testing and Materials, Easton, MD, 1980).Google Scholar
  20. 20.
    Y.-W. MAI and A. S. VIPOND,J. Mater. Sci. Lett. 13 (1978) 2280.CrossRefGoogle Scholar
  21. 21.
    ADINA R and D, INC, USA (1992).Google Scholar
  22. 22.
    P. M. UNTERWEISER and H. M. COBB (eds), “Worldwide Guide to Equivalent Nonferrous Metals and Alloys”, 2nd Edn, (ASM International, 1987).Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • H. R. Daghyani
    • 1
  • L. Ye
    • 1
  • Y. -W. Mai
    • 1
  1. 1.Centre for Advanced Materials Technology (CAMT), Department of Mechanical and Mechatronic EngineeringThe University of SydneyAustralia

Personalised recommendations