Advertisement

Journal of Paleolimnology

, Volume 11, Issue 2, pp 189–200 | Cite as

Paleolimnological reconstruction of recent changes in assemblages of Cladocera from acidified lakes in the Adirondack Mountains (New York)

  • Michael J. Paterson
Article

Abstract

Remains of Cladocera were examined in short sediment cores from three Adirondack lakes with mean pHs below 5 and a fourth with a mean pH of 6.5. These cores were collected as part of the Paleoecological Investigation of Recent Lake Acidification (PIRLA I) project. Historical and paleolimnological evidence suggests that pH has decreased in each of the acid lakes in recent decades. In all of the study cores, the greatest changes in net accumulation rates, assemblage composition, and species richness occurred in recently deposited sediments. The similar timing of events in all lakes suggests that a regional disturbance was responsible. In the three acid lakes, there was a strong association of changes in cladoceran assemblages and diatom, chrysophyte, and geochemical evidence of acidification. The occurrence of recent changes in non-acid Windfall Pond indicates that other factors may also have affected Cladocera in the study lakes.

Key words

paleolimnology lake acidification Cladocera Chydoridae Adirondack Mountains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, N. J., 1989. A whole-basin diatom accumulation rate for a small eutrophic lake in Northern Ireland and its palaeoecological implications. J. Ecol. 77: 926–946.Google Scholar
  2. Appelberg, M., B. Henrikson, L. Henrikson & M. Svedang, 1993. Biotic interactions within the littoral community of Swedish forest lakes during acidification. Ambio 22: 290–297.Google Scholar
  3. Altshuller, A. P. & R. A. Linthurst (eds), 1984. The acidic deposition phenomenon and its effects: Critical assessment and review papers. EPA-600/8-3/01BF. U.S. Environmental Protection Agency, Washington, D.C.Google Scholar
  4. Arzet, K., D. Krause-Dellin & C. Steinberg, 1986. Acidification of four lakes in the Federal Republic of Germany as reflected by diatom assemblages, cladoceran remains, and sediment chemistry. In J. P. Smol, R. W. Batterbee, R. W. Davis, and J. Meriläinen (eds), Diatoms and Lake Acidity. Dr. W. Junk, Dordrecht, Netherlands: 227–250.Google Scholar
  5. Binford, M. W., 1983. Ecological correlates of net accumulation rates of Cladocera remains in lake sediments.Hydrobiologia 143: 123–128.Google Scholar
  6. Binford, M. W., 1990. Calculation and uncertainty analysis of210Pb dates for PIRLA project lake sediment cores. J. Paleolim. 3: 253–267.Google Scholar
  7. Binford, M. W., J. S. Kahl & S. A. Norton, 1993. Interpretation of210Pb profiles and verification of the CRS dating model in PIRLA project lake sediment cores. J. Paleolim. 9: 275–296.Google Scholar
  8. Brakke, D. F., 1980. Atmospheric deposition in Norway during the last 300 years as recorded in SNSF lake sediments. III. Cladoceran community structure and stratigraphy. In D. Drabløs and A. Tollan (eds), Ecological impact of acid precipitation. SNSF project, Oslo, Norway: 272–273.Google Scholar
  9. Brakke, D. F., R. B. Davis & K. H. Kenlan, 1984. Acidification and changes over time in the chydorid cladocera assemblage of New England lakes. In G. R. Hendrey (ed.), Early biotic responses to advancing lake acidification. Butterworth, Boston (MA): 85–104.Google Scholar
  10. Brett, M. T., 1989. Zooplankton communities and acidification processes (a review). Wat. Air Soil Pollut. 44: 387–414.Google Scholar
  11. Brezonik, P. L., J. G. Eaton, T. M. Frost, P. J. Garrison, T. K. Kratz, C. E. Mach, J. H. McCormick, J. A. Perry, W. A. Rose, C. J. Sampson, B. C. L. Shelly, W. A. Swenson & K. E. Webster, 1993. Experimental acidification of Little Rock Lake, Wisconsin: chemical and biological changes over the pH range 6.1 to 4.7. Can. J. Fish. aquat. Sci. 50: 1101–1121.Google Scholar
  12. Charles, D. F. & S. A. Norton, 1986. Paleolimnological evidence for trends in atmospheric deposition of acids and metals. Acid deposition: long-term trends. National Academy Press, Washington, D.C.: 335–435.Google Scholar
  13. Charles, D. F. & J. P. Smol, 1988. New methods for using diatoms and chrysophytes to infer past pH of low-alkalinity lakes. Limnol. Oceanogr. 33: 1451–1462.Google Scholar
  14. Charles, D. F. & D. R. Whitehead, 1986a. The PIRLA project: Paleoecological investigations of recent lake acidification. Hydrobiologia 143: 13–20.Google Scholar
  15. Charles, D. F. & D. R. Whitehead (eds), 1986b. Paleoecological investigation of recent lake acidification: methods and project description. EA-4906 Research Project 2174-10, Electric Power Research Institute, Palo Alto, CA.Google Scholar
  16. Charles, D. F., M. W. Binford, E. T. Furlong, R. A. Hites, M. J. Mitchell, S. A. Norton, F. Oldfield, M. J. Paterson, J. P. Smol, A. J. Uutala, J. R. White, D. R. Whitehead & R. J. Wise, 1990. Paleoecological investigation of recent lake acidification in the Adirondack Mountains, N. Y. J. Paleolim. 3: 195–241.Google Scholar
  17. Charles, D. F., D. R. Whitehead, D. S. Anderson, R. Bienert, K. E. Camburn, R. B. Cook, T. L. Crisman, R. B. Davis, J. Ford, B. D. Fry, R. A. Hites, J. S. Kahl, J. C. Kingston, R. G. Kreis Jr., M. J. Mitchell, S. A. Norton, L. A. Roll, J. P. Smol, P. R. Sweets, A. J. Uutala, J. R. White, M. C. Whiting & R. J. Wise, 1986. The PIRLA project (Paleoecological Investigation of Recent Lake Acidification): Preliminary results for the Adirondacks, New England, N. Great Lakes states, and N. Florida. Wat. Air Soil Pollut. 30: 355–365.Google Scholar
  18. Collins, N. C., A. P. Zimmerman & R. Knoechel, 1981, Comparisons of benthic infauna and epifauna biomasses in acidified and non-acidified Ontario lakes. In R. Singer (ed.), Effects of Acid Precipitation on Benthos. North American Benthological Society, Hamilton (N.Y.): 35–48.Google Scholar
  19. Confer, J. L., T. Kaaret & G. E. Likens, 1983. Zooplankton diversity and biomass in recently acidified lakes. Can. J. Fish. aquat. Sci. 40: 36–42.Google Scholar
  20. Dixit, S. S., J. P. Smol, J. C. Kingston & D. F. Charles, 1992. Diatoms: powerful indicators of environmental change. Envir. Sci. Technol. 26: 23–33.Google Scholar
  21. France, R. L. & P. M. Welbourn, 1992. Influence of lake pH and macrograzers on the distribution and abundance of nuisance metaphytic algae in Ontario, Canada. Can. J. Fish. aquat. Sci. 49: 185–195.Google Scholar
  22. Goulden, C. E., 1964. The history of the cladoceran fauna of Esthwaite Water (England) and its limnological significance. Arch. Hydrobiol. 60: 1–52.Google Scholar
  23. Goulden, C. E., 1969. Interpretative studies of cladoceran microfossils in lake sediments. Mitt. int. Ver. Limnol. 17: 43–55.Google Scholar
  24. Goulden, C. E. & G. Vostreys, 1985. Animal microfossils. In G. E. Likens (ed.), An Ecosystem Approach to Aquatic Ecology. Mirror Lake and its Environment. Springer-Verlag, New York (N.Y.): 382–386.Google Scholar
  25. Hann, B. J., 1981. Occurrence and distribution of littoral Chydoridae (Crustacea, Cladocera) in Ontario, Canada, and taxonomic notes on some species. Can. J. Zool. 59: 1465–1474.Google Scholar
  26. Hann, B. J., 1989. Methods in quaternary ecology #6. Cladocera. Geoscience Canada 16: 17–26.Google Scholar
  27. Hansen, J. & S. Lebedeff, 1987. Global trends of measured surface air temperature. J. Geophys. Res. 92: 13345–13372.Google Scholar
  28. Havas, M., 1985. Aluminum accumulation and toxicity toDaphnia magna in soft water at low pH. Can. J. Fish. aquat. Sci. 42: 1741–1748.Google Scholar
  29. Havens, K. E. & J. DeCosta. 1987. The role of aluminum contamination in determining phytoplankton and zooplankton responses to acidification. Wat. Air Soil Pollut. 33: 277–293.Google Scholar
  30. Havens, K. E., 1991. Littoral zooplankton responses to acid and aluminum stress during short-term laboratory bioassays. Envir. Pollut. 73: 71–84.Google Scholar
  31. Havens, K. E., 1992. Acid and aluminum effects on sodium home-ostasis and survival of acid-sensitive and acid-tolerant Cladocera. Can. J. Fish. aquat. Sci. 49: 2392–2398.Google Scholar
  32. Jackson, S. T. & D. F. Charles, 1988. Aquatic macrophytes in Adirondack (New York) lakes: patterns of species composition in relation to environment. Can. J. Bot. 66: 1449–1460.Google Scholar
  33. Ketchledge, E. H., 1965. Changes in the forests of New York. The N.Y. State Conservationist (February–March).Google Scholar
  34. Kingston, J. C. & H. J. B. Birks, 1990. Dissolved organic carbon reconstructions from diatom assemblages in PIRLA project lakes, North America. Phil. Trans. r. Soc., Lond. B 327: 279–288.Google Scholar
  35. Kingston, J. C., H. J. B. Birks, A. J. Uutala, B. F. Cumming & J. P. Smol, 1992. Assessing trends in fishery resources and lake water aluminum from paleolimnological analyses of siliceous algae. Can. J. Fish. aquat. Sci. 49: 116–127.Google Scholar
  36. Locke, A., 1991. Zooplankton responses to acidification: a review of laboratory bioassays. Wat. Air Soil Pollut. 60: 135–148.Google Scholar
  37. Marmorek, D. R. & J. Korman, 1993. The use of zooplankton in a biomonitoring program to detect lake acidification and recovery. Wat. Air Soil Pollut. 69: 223–241.Google Scholar
  38. Nilssen, J. P. & S. Sandøy, 1990. Recent lake acidification and cladoceran dynamics: surface sediment and core analyses from lakes in Norway, Scotland and Sweden. Phil. Trans. r. Soc., Lond. B 327: 299–309.Google Scholar
  39. Norton, S. A., R. W. Bienert, M. W. Binford & J. S. Kahl, 1992. Stratigraphy of total metals in PIRLA sediment cores. J. Paleolim. 7: 191–214.Google Scholar
  40. Nyberg, P., 1984. Impact ofChaoborus: predation on planktonic crustacean communities in some acidified and limed forest lakes in Sweden. Rep. Inst. Freshw. Res. Drottingholm 61: 155–166.Google Scholar
  41. Paterson, M. J., 1985. Paleolimnological reconstruction of cladoceran response to presumed acidification of four lakes in the Adirondack Mountains (New York). M.A. thesis, Indiana Univ., Bloomington, Indiana, 200 pp.Google Scholar
  42. Rudd, J. W. M. (ed.), 1987. Acification of the Moose River system in the Adirondack Mountains of New York state. Biogeochemistry 3: 1–296.Google Scholar
  43. Schofield, C. L. & C. T. Driscoll, 1987. Fish species distribution in relation to water quality gradients in the North Branch of the Moose River Basin. Biogeochemistry 3: 63–85.Google Scholar
  44. Smol, J. P., 1981. Problems associated with the use of ‘species diversity’ in paleolimnological studies. Quat. Res. 15: 209–212.Google Scholar
  45. Smol, J. P. & S. S. Dixit, 1990. Patterns of pH change inferred from chrysophyte microfossils in Adirondack and northern New England lakes. J. Paleolim. 4: 31–41.Google Scholar
  46. Smol, J. P., D. F. Charles & D. R. Whitehead, 1984. Mallomonadacean microfossils provide evidence of recent lake acidification. Nature 307: 628–630.Google Scholar
  47. Steinberg, C., H. Hartmann, K. Arzet & D. Krause-Dellin, 1988. Paleoindication of acidification in Kleiner Arbersee (Federal Republic of Germany, Bavarian Forest) by chydorids, chrysophytes, and diatoms. J. Paleolim. 1: 149–157.Google Scholar
  48. Sutherland, J. W., S. O. Quinn, J. A. Bloomfield & C. A. Siegfreid, 1983. Lake acidification and the biology of Adirondack lakes: crustacean zooplankton communities. Lake and Reservoir Management. EPA 440/5/84-001: 380–384.Google Scholar
  49. ter Braak, C. J. F., 1992. CANOCO — a FORTRAN program for Canonical Community Ordination. Microcomputer Power, Ithaca, New York (N.Y.), 95 pp.Google Scholar
  50. Uimonen-Simola, P. & K. Tolonen, 1987. Effects of recent lake acidification on Cladocera in small clear water lakes studied by means of sedimentary remains. Hydrobiologia 145: 343–351.Google Scholar
  51. Uutala, A. J., 1986. Paleolimnological assessment of the effects of lake acidification on Chironomidae (Diptera) assemblages in the Adirondack region of New York. Ph.D. Thesis, St. Univ. NY Coll. Envir. Sci. For., Syracuse, 156 pp.Google Scholar
  52. Uutala, A. J., 1990.Chaoborus (Diptera: Chaoboridae) mandibles — paleolimnological indicators of the historical status of fish populations in acid-sensitive lakes. J. Paleolim. 4: 139–151.Google Scholar
  53. Wood, R. B., T. E. Andrew & J. M. Redfern, 1990. Cladoceran remains from the most recent sediments of Lough Neagh, northern Ireland. Verh. int. Ver. Limnol. 24: 560–562.Google Scholar
  54. Yan, N. D., C. J. LaFrance & G. G. Hitchin, 1982. Planktonic fluctuations in a fertilized, acidic lake: the role of invertebrate predators. In R. E. Johnson (ed.), Acid Rain/Fisheries. American Fisheries Society, Bethesda (MD.): 137–154.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Michael J. Paterson
    • 1
  1. 1.Department of Fisheries and Oceans, Freshwater Institute501 University CrescentWinnipegCanada

Personalised recommendations