Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Vortex dynamics and scaling in turbulent counterflowing helium II

  • 72 Accesses

  • 35 Citations

Abstract

Dimensional analysis of the equation of motion for a vortex line yields a dimensionless velocity which controls the development of a vortex line tangle in counterflowing helium II. This scaling is applied to measurements of critical velocities and ratios of line density to counterflow velocity from experiments in channels of different sizes; substantially better agreement is found than previously reported. An asymptotic relationship is derived between line density and counterflow velocity which fits new and existing data remarkably well. This relationship is used to explain the increase in the power law of the Gorter-Mellink relationship between temperature gradient and heat flux near the λ point.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    W. F. Vinen,Proc. R. Soc. A 240, 114, 128 (1957);242, 493 (1957);243, 400 (1957).

  2. 2.

    J. T. Tough, inProgress in Low Temperature Physics, Vol. VIII, D. F. Brewer, ed. (North-Holland, Amsterdam, 1982), Chapter 3.

  3. 3.

    L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon, London, 1959).

  4. 4.

    D. J. Tritton,Physical Fluid Dynamics (Van Nostrand Reinhold, New York, 1977).

  5. 5.

    P. L. Kapitza,Zh. Eksp. Teor. Fiz. 11, 1 (1941).

  6. 6.

    R. J. Donnelly and A. C. Hollis Hallett,Ann. Phys. (N.Y.),3, 320 (1958).

  7. 7.

    S. Chandrasekhar and R. J. Donnelly,Proc. R. Soc. A 241, 9 (1957).

  8. 8.

    C. F. Barenghi, R. J. Donnelly, W. F. Vinen,J. Low Temp. Phys. 52, 189 (1983).

  9. 9.

    K. W. Schwarz,Phys. Rev. Lett. 49, 283 (1982).

  10. 10.

    K. W. Schwarz,Phys. Rev. B 18, 245 (1978).

  11. 11.

    D. D. Awschalom, F. P. Milliken, and K. W. Schwarz,Phys. Rev. Lett. 53, 1372 (1984).

  12. 12.

    K. P. Martin and J. T. Tough,Phys. Rev. B 27, 2788 (1983).

  13. 13.

    C. J. Gorter and J. H. Mellink,Physica 15, 285 (1949).

  14. 14.

    J. M. Pfotenhauer and R. J. Donnelly, inAdvances in Heat Transfer, Vol. 17, T. Irvine and J. P. Hartnett, eds. (Academic Press, New York, 1985), in press.

  15. 15.

    C. Bon Mardion, G. Claudet, and P. Seyfert, inProceedings 7th International Cryogenic Conference (IPC Science and Technology Press, London, 1978), p. 214.

  16. 16.

    E. J. Yarmchuk and W. I. Glaberson,J. Low Temp. Phys. 36, 381 (1979).

  17. 17.

    R. J. Arms and F. R. Hama,Phys. Fluids 8, 553 (1965).

  18. 18.

    L. E. Fraenkel,J. Fluid Mech. 51, 137 (1972).

  19. 19.

    V. P. Peshkov and V. J. Tkachenko,Zh. Eksp. Teor. Fiz. 41, 1421 (1961) [Sov. Phys. JETP 14, 1019 (1962)].

  20. 20.

    C. E. Chase,Phys. Rev. 131, 1898 (1963).

  21. 21.

    C. E. Chase,Phys. Rev. 127, 361 (1962).

  22. 22.

    C. E. Oberly and J. T. Tough,J. Low Temp. Phys. 7, 223 (1972).

  23. 23.

    D. F. Brewer and D. O. Edwards,Phil. Mag. 6, 775, 1173 (1961).

  24. 24.

    D. R. Ladner, R. K. Childers, and J. T. Tough,Phys. Rev. B 13, 2918 (1976).

  25. 25.

    C. E. Swanson, Thesis, University of Oregon, Eugene, Oregon (1985).

  26. 26.

    D. R. Ladner and J. T. Tough,Phys. Rev. B 20, 2960 (1979).

  27. 27.

    P. E. Dimotakis and J. E. Broadwell,Phys. Fluids 16, 1787 (1973).

  28. 28.

    R. K. Childers and J. T. Tough,Phys. Rev. B 13, 1040 (1976).

  29. 29.

    V. P. Peshkov and V. B. Stryukov,Zh. Eksp. Teor. Fiz. 41, 1443 (1961) [Sov. Phys. JETP 14, 1031, 1962].

  30. 30.

    H. C. Kramers, inSuperfluid Helium, J. F. Allen, ed. (Academic Press, London, 1965), p. 199.

  31. 31.

    W. de Haas, A. Hartoog, H. van Beelen, R. de Bruyn Ouboter, and K. W. Taconis,Physica 75, 311 (1974).

  32. 32.

    R. R. Ijsselstein, M. P. De Goeje, and H. C. Kramers,Physica 96B, 312 (1979).

  33. 33.

    G. van der Heijden, J. J. Giezen, and H. C. Kramers,Physica 61, 566 (1972).

  34. 34.

    W. de Haas and H. van Beelen,Physica 83B, 129 (1976).

  35. 35.

    R. A. Ashton and J. T. Tough,Bull. Am. Phys. Soc. 25, 533 (1980).

  36. 36.

    P. W. Anderson,Rev. Mod. Phys. 38, 298 (1966).

  37. 37.

    G. Ahlers,Phys. Rev. Lett. 22, 54 (1969).

  38. 38.

    P. Mathieu, B. Plaçais, and Y. Simon,Phys. Rev. B 29, 2489 (1984).

  39. 39.

    L. D. Landau and E. M. Lifshitz,Statistical Mechanics, 3rd ed. (Pergamon, London, 1980).

  40. 40.

    P. H. Roberts and R. J. Donnelly, inAnnual Review of Fluid Mechanics, Vol. 6, M. Van Dyke, W. G. Vincenti, and J. V. Wehausen, eds. (Annual Reviews Palo Alto, California, 1974), p. 179.

  41. 41.

    C. F. Barenghi, C. E. Swanson, and R. J. Donnelly, in75th Jubilee Conference on Helium-4, J. G. M. Armitage, ed. (World Scientific, Singapore, 1983), p. 52.

  42. 42.

    H. A. Snyder and Z. Putney,Phys. Rev. 150, 110 (1966).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Swanson, C.E., Donnelly, R.J. Vortex dynamics and scaling in turbulent counterflowing helium II. J Low Temp Phys 61, 363–399 (1985). https://doi.org/10.1007/BF00683692

Download citation

Keywords

  • Vortex
  • Heat Flux
  • Helium
  • Temperature Gradient
  • Magnetic Material