Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Investigation of defect structure of neutron-irradiated crystalline silicon by low-temperature thermal conductivity

  • 38 Accesses

  • 5 Citations

Abstract

The thermal conductivity of initially n-type silicon irradiated at temperatures higher than room temperature with fast neutron doses between 2·1018 and 2·1019 n/cm2 and following thermal annealing at 375 °C and 800 °C was measured at low temperatures (2–200 K). Additionally, the heat capacity was investigated in the temperature range from 2 K to 50 K. With the help of the analysis of λ(T) on the basis of the Callaway model, results on the nature of neutron-induced defects and their change by annealing were obtained. The neutron-induced damage can be described by point defects and by extended defects in the kind of dislocations or dislocation loops, respectively. The interaction of point defects with phonons appears as Rayleigh scattering and partially as resonance-like scattering. At the Si sample with highest neutron dose, an anomalous behavior (“cooling effect”) was observed after annealing at 375 °C. The state of structure is not stable by cooling between room temperature and 78 K and therefore a decrese of λ(T) with each cooling cycle is obtained. A significant change of specific heat was not observed by neutron irradiation.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    H. J. Albany and M. Vandevyver,J. Appl. Phys. 38, 425 (1967).

  2. 2.

    P. Seyfert,J. Low Temp. Phys. 2, 555 (1970).

  3. 3.

    W. Primak,Phys. Rev. 110, 1240 (1958).

  4. 4.

    J. W. Gardner and A. C. Anderson,Phys. Rev. B 23, 474 (1981).

  5. 5.

    P. F. Sullivan and G. Seidel,Phys. Rev. 173, 679 (1968).

  6. 6.

    M. Mertig, Dissertation, Dresden Technical University (1983), unpublished.

  7. 7.

    Y. H. Lee and J. W. Corbett,Phys. Rev. B 9, 4351 (1974).

  8. 8.

    J. Guldberg,J. Phys. D 11, 2043. (1978).

  9. 9.

    Th. O. Baldwin, J. E. Thomas, J. K. Haldeman,J. Appl. Phys. 50, 3478 (1979).

  10. 10.

    P. Flubacher, A. J. Leadbetter, J. A. Morrison,Phil. Mag. 4, 273 (1959).

  11. 11.

    A. D. Zdetsis, C. S. Wang,Phys. Rev. B 19, 2999 (1979).

  12. 12.

    H. J. Schink, H. v. Löhneysen,Appl. Phys. (Ger.)A 36, 15 (1985); H. v. Löhneysen,J. Non-Cryst. Solids 59, 60, 1087 (1983).

  13. 13.

    M. Mertig, G. Pompe, and E. Hegenbarth,Solid State Commun. 49, 369 (1984).

  14. 14.

    J. W. Callaway,Phys. Rev. 113, 1046 (1959).

  15. 15.

    R. Berman, F. E. Simon, and S. M. Ziman,Proc. R. Soc. A 220, 171 (1953).

  16. 16.

    P. G. Klemens,Proc. R. Soc. A 68, 1113 (1955).

  17. 17.

    M. G. Holland, L. J. Neuringer, Proceedings of the International Conference on Physics and Semiconductors (The Institute of Physics and the Physical Society, London, 1962), p. 474.

  18. 18.

    I. Narayan and J. Fletcher, inDefects in Semiconductors, J. Narayan and T. Y. Tan, eds (North Holland, Amsterdam, 1980).

  19. 19.

    R. S. Nelson inRadiation Damage Processes in Materials, C. H. S. Dupey, ed. (Noordhoff, Leyden, 1975).

  20. 20.

    M. A. Ghantous, K. Guckelsberger, and M. Locatelli,J. Phys. Chem. Solids 41, 473 (1980).

  21. 21.

    R. O. Pohl inElementary Excitations in Solids, A. A. Maradudin and G. F. Nardelli, eds. (Plenum Press, New York, 1969), p. 259.

  22. 22.

    J. M. Meese, inNeutron Transmutation Doping in Silicon, J. Guldberg, ed. (Plenum Press, New York, 1981), p. 101.

  23. 23.

    A. Kumar, B. K. Srivastava, and M. A. Ansari,Phys. Status Solidi B138, 423 (1986).

  24. 24.

    L. A. Turk and P. G. Klemens,Phys. Rev. B 9, 4422 (1974).

  25. 25.

    G. Leibfried,Bestrahlungseffekte in Festkörpern (Teubner-Verlag, Stuttgart, 1965).

  26. 26.

    N. abd el Rehim, Dissertation, Dresden Technical University (1985), unpublished.

  27. 27.

    H. J. Stein,J. Appl. Phys. 38, 204 (1967).

  28. 28.

    Y. H. Lee and J. W. Corbett,Phys. Rev. B 8, 2810 (1973).

  29. 29.

    R. C. Newman and D. H. J. Totterdell,J. Phys. C 8, 3944 (1975).

  30. 30.

    B. Schröder, H. Wild, and E. Minniger,J. Nucl. Mater. 108, 685 (1982).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pompe, G., abd el Rehim, N. & Mertig, M. Investigation of defect structure of neutron-irradiated crystalline silicon by low-temperature thermal conductivity. J Low Temp Phys 74, 475–490 (1989). https://doi.org/10.1007/BF00682670

Download citation

Keywords

  • Thermal Conductivity
  • Heat Capacity
  • Point Defect
  • Thermal Annealing
  • Fast Neutron