Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Surface tension of helium at the superfluid critical end-point

  • 41 Accesses

  • 13 Citations

Abstract

The singularity in the vapor-liquid interfacial tension, ∑(T), of helium at the transition to superfluidity is analyzed theoretically. The universal amplitude ratio R σξ + =K+ 0 + )d−1/k B Tλ , where K+ and K are the amplitudes of the |T−Tλ|µ singularity in ∑, with μ=1.34 3 , is known from recent work to first order in ε=4−d for the general n-vector model in d dimensions. Extrapolation to d=3 for n=2 indicates R σξ + =0.05−0.08, which is shown to be consistent with the experimental data. Further analysis of the experiments establishes that the universal ratio Q=K+/K exceeds 0.35, and is consistent with the recent prediction Q≃0.9; this demonstrates the inadequacies of earlier theoretical treatments. The existence in the observed surface tension of an anomalous, negative contribution of unknown origin at a few millikelvin beneath Tλ is stressed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    (a) B. Widom,Chem. Soc. Rev. 14, 121 (1985); (b) F. Ramos-Gomez and B. Widom,Physica A (Amsterdam)104, 595 (1980); (c) P. Tavan and B. Widom,Phys. Rev. B 27, 180 (1983).

  2. 2.

    (a) M. E. Fisher,Physica A 172, 77 (1991); (b) M. E. Fisher and P. J. Upton,Phys. Rev. Lett. 65, 2402 (1990).

  3. 3.

    M. E. Fisher and P. J. Upton,Phys. Rev. Lett. 65, 3405 (1990); P. J. Upton,Phys. Rev. B 45, 8100 (1992).

  4. 4.

    M. E. Fisher and M. C. Barbosa,Phys. Rev. B 43, 11177 (1991); M. C. Barbosa and M. E. Fisher,Phys. Rev. B 43, 10635 (1991); M. C. Barbosa,Physica A 177, 153 (1991).

  5. 5.

    T. H. Magerlein and T. M. Sanders, Jr.,Phys. Rev. Lett. 36, 258 (1976).

  6. 6.

    M. Suzuki, M. Iino, and A. T. Ikushima,J. Low Temp. Phys. 63, 129 (1986).

  7. 7.

    P. C. Hohenberg,J. Low Temp. Phys. 13, 433 (1973).

  8. 8.

    A. A. Sobyanin,Zh. Eksp. Teor. Fiz. 61, 433 (1971) [Sov. Phys. JETP 34, 229 (1972)].

  9. 9.

    V. L. Ginzburg and A. A. Sobyanin,Usp. Fiz. Nauk. 154, 545 (1988) [Sov. Phys. Usp. 31, 289 (1988)].

  10. 10.

    A. A. Sobyanin and A. A. Stratonnikov,Phys. Lett. A 126, 356 (1988).

  11. 11.

    P. C. Hohenberg, A. Aharony, B. I. Halperin, and E. D. Siggia,Phys. Rev. B 13, 2986 (1976); C. Bervillier,Phys. Rev. B 14, 4964 (1976).

  12. 12.

    V. Privman, P. C. Hohenberg, and A. Aharony, inPhase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz, eds. (Academic, New York, 1990), Vol. 14, p. 1.

  13. 13.

    M. Krech and S. Dietrich,Phys. Rev. Lett. 66, 345 (1991), see p. 347, andPhys. Rev. A (1992) [in press] Appendix E.

  14. 14.

    (a) H. W. Diehl, inPhase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz, eds. (Academic, New York, 1986), Vol. 10, p. 76; for the energy-density profile see also (b) S. Dietrich and H. W. Diehl,Z. Phys. B 43, 315 (1981).

  15. 15.

    L. V. Mikheev and M. E. Fisher, unpublished; numerical evidence is given in Ref. 1(c).

  16. 16.

    Y. Y. Goldschmidt and D. Jasnow,Phys. Rev. B 29, 3990 (1984); this paper contains a few slips in the derivations, but the final results are correct.

  17. 17.

    A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev,Integrals and Series, (Gordon and Breach, New York, 1986), Vol. 2.

  18. 18.

    A. J. Liu and M. E. Fisher,Physica A (Amsterdam)156, 35 (1989).

  19. 19.

    E. Brézin and S. Feng,Phys. Rev. B 29, 472 (1984).

  20. 20.

    M. E. Fisher and H. Wen,Phys. Rev. Lett. 68, 3654 (1992) [C].

  21. 21.

    K. K. Mon, D. P. Landau, and D. Stauffer,Phys. Rev. B 42, 545 (1990) and references therein.

  22. 22.

    G. Ahlers,Phys. Rev. A 8, 530 (1973); K. H. Mueller, F. Pobell and G. Ahlers,Phys. Rev. Lett. 34, 513 (1975).

  23. 23.

    A. Singsaas and G. Ahlers,Phys. Rev. B 30, 5103 (1984).

  24. 24.

    M. Ferer, M. A. Moore, and M. Wortis,Phys. Rev. B 8, 5205 (1973).

  25. 25.

    T. H. Magerlein, Ph. D. thesis, University of Michigan, Ann Arbor, 1975 (unpublished).

  26. 26.

    E. C. Kerr and R. D. Taylor,Ann. Phys. (N.Y.)26, 292 (1964).

  27. 27.

    M. A. Paalanen and Y. Iye,Phys. Rev. Lett. 55, 1761 (1985); D. Cieslikowsky, A. J. Dahm, and S. Leiderer,Phys. Rev. Lett. 58, 1751 (1987).

  28. 28.

    L. V. Mikheev and A. A. Chernov,Zh. Eksp. Teor. Phys. 92, 1732 (1987) [Sov. Phys. JETP 65, 971 (1987)]; A. A. Chernov and L. V. Mikheev,Phys. Rev. Lett. 60, 2488 (1988);Physica A 157, 1042 (1989).

  29. 29.

    E. Eisenriegler,J. Chem. Phys. 81, 4666 (1984).

  30. 30.

    M. E. Fisher inCollective Properties of Physical Systems, B. Lundqvist and S. Lundqvist, eds. (Academic, New York, 1973) p. 16.

  31. 31.

    L. V. Mikheev and M. E. Fisher,J. Stat. Phys. 66, 1225 (1992).

  32. 32.

    L. V. Mikheev and M. E. Fisher,Phys. Rev. Lett. 70, (1993) [in press].

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mikheev, L.V., Fisher, M.E. Surface tension of helium at the superfluid critical end-point. J Low Temp Phys 90, 119–138 (1993). https://doi.org/10.1007/BF00682013

Download citation

Keywords

  • Experimental Data
  • Helium
  • Surface Tension
  • Recent Work
  • Magnetic Material