Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Rf SQUID in the nonhysteretic regime withk 2 Ql>1

  • 42 Accesses

  • 22 Citations


Experimental measurements of current-voltage, current-phase, amplitude-frequency, phase-frequency, and signal characteristics of an rf SQUID operating at a frequency of 30 MHz in the nonhysteretic regime (l=2πL 0 I 00<1) were carried out for the conditionk 2 Ql>1. HereI 0 is the critical current of the weak link,L 0 is the SQUID ring inductance,k is the coefficient of coupling of the SQUID ring to a resonant tank circuit of qualityQ, and ф0 is the magnetic flux quantum. A numerical analysis of the above characteristics for all relevant parameter values close to those occurring under experimental conditions was performed for qualitative comparison with theory. The main difference from the traditional nonhysteretic regime of SQUID operation (k 2 Ql<1,l<1) is the possibility of a strong increase in the magnetic flux-to-voltage transfer coefficients η a and ηθ corresponding to changes in the rf amplitude and the phase. The increase in η is known to reduce the amplifier noise contribution to the SQUID energy resolution. At a temperature of 4.2 K the maximum value of the transfer coefficient was estimated experimentally as η=(3±2)×1012 V/Wb for the single-valued region of the signal characteristics. The results suggest that considerable improvement of rf SQUID resolution is possible in the regimek 2 Ql>1.

This is a preview of subscription content, log in to check access.


  1. 1.

    A. V. Gusev and V. N. Rudenko,Zh. Eksp. Teor. Fiz. 72, 1217 (1977) [Sov. Phys.—JETP 45, 637 (1977)].

  2. 2.

    B. Cabrera, inFuture Trends in Superconducting Electronics (AIP Conference Proceedings No. 44, New York, 1978), p. 73.

  3. 3.

    K. K. Likharev and B. T. Ulrich,Dynamics of Josephson Junction Circuits; Basic Theory (Moscow Univ. Publ., Moscow, 1978).

  4. 4.

    R. P. Giffard, inFuture Trends in Superconducting Electronics (AIP Conference Proceedings No. 44, New York, 1978), p. 11.

  5. 5.

    L. D. Jackel and R. A. Buhrman,J. Low Temp. Phys. 19, 201 (1975).

  6. 6.

    R. A. Buhrman and L. D. Jackel,IEEE Trans. Magn. MAG-13, 879 (1977).

  7. 7.

    V. I. Shnyrkov, G. M. Tsoi, and V. V. Kartsovnik, inProc. 21 All Union Conf. Low Temp. Phys. (Kharkov, 1980), Chapter 4, p. 274.

  8. 8.

    H. Ahola, G. J. Ehnholm, P. Östman, and B. Rantala,J. Low Temp. Phys. 35, 313 (1979); A. P. Long, T. D. Clark, and R. J. Prance,Rev. Sci. Instr. 51, 8 (1980).

  9. 9.

    V. V. Danilov and K. K. Likharev,Zh. Tekhn. Fiz. 45, 1110 (1975) [Sov. Phys.—Techn. Phys. 20, 697 (1975)].

  10. 10.

    J. Clarke, W. M. Goubau, and M. B. Ketchen,J. Low. Temp. Phys. 25, 99 (1976).

  11. 11.

    M. B. Ketchen and R. F. Voss,Appl. Phys. Lett. 35, 812 (1979).

  12. 12.

    V. V. Danilov and K. K. Likharev,Radiotekhnika i Elektronika 25, 1725 (1980).

  13. 13.

    V. I. Shnyrkov, V. A. Khlus, G. M. Tsoi, and M. P. Chetayev,Fiz. Nizk. Temp. 4, 719 (1978) [Sov. J. Low Temp. Phys. 46, 343 (1978)].

  14. 14.

    V. I. Shnyrkov, V. A. Khlus, and G. M. Tsoi,J. Low Temp. Phys. 39, 477 (1980).

  15. 15.

    R. Rifkin, D. A. Vincent, B. S. Deaver, and P. K. Hansma,J. Appl. Phys. 47, 2645 (1976).

  16. 16.

    D. Pascal and M. Sauzade,J. Appl. Phys. 45, 3085 (1974).

  17. 17.

    J. Clarke, inFuture Trends in Superconducting Electronics (AIP Conference Proceedings No. 44, New York, 1978), p. 1.

  18. 18.

    J. N. Hollenhorst and R. P. Giffard,IEEE Trans. Magn. MAG-15, 474 (1979).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dmitrenko, I.M., Tsoi, G.M., Shnyrkov, V.I. et al. Rf SQUID in the nonhysteretic regime withk 2 Ql>1. J Low Temp Phys 49, 417–433 (1982). https://doi.org/10.1007/BF00681894

Download citation


  • Transfer Coefficient
  • Signal Characteristic
  • Magnetic Flux
  • Energy Resolution
  • Relevant Parameter