Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Scattering of phonons by sessile dislocations in deformed germanium

  • 52 Accesses

  • 2 Citations

Abstract

The scattering of phonons by sessile dislocations has been studied by means of thermal conductivity measurements on plastically deformed germanium samples over the temperature range 0.02 to 6 K. The results are compared with calculations based on the static model of the phonon-dislocation interaction. The scattering strength obtained from experimental data is a factor of two to three larger than that calculated from the static model, while the temperature dependence agrees with theory over a broad range of temperatures.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    F. R. N. Nabarro,Proc. Roy. Soc. A 209, 278 (1951).

  2. 2.

    P. G. Klemens,Proc. Phys. Soc. A 68, 1113 (1955); inSolid State Physics, F. Seitz and D. Turnbull, eds. (Academic Press, New York, 1958), Vol. 7, p. 1.

  3. 3.

    P. Carruthers,Phys. Rev. 114, 995 (1959);Rev. Mod. Phys. 33, 92 (1961).

  4. 4.

    H. Bross, A. Seeger, and R. Haberkorn,Phys. Stat. Sol. 3, 1126 (1963).

  5. 5.

    K. Ohashi,J. Phys. Soc. Jpn. 24, 437 (1968).

  6. 6.

    Y. Kogure and Y. Hiki,J. Phys. Soc. Jpn. 36, 1597 (1974);J. Phys. Soc. Jpn. 38, 471 (1975).

  7. 7.

    M. Moss,J. Appl. Phys. 37, 4168 (1966).

  8. 8.

    R. A. Brown,J. Phys. (Paris)42, C6–271 (1981).

  9. 9.

    M. W. Ackerman,Phys. Rev. B 5, 2751 (1972).

  10. 10.

    A. V. Granato,Phys. Rev. 111, 740 (1958); J. A. Garber and A. V. Granato,J. Phys. Chem. Sol. 31, 1863 (1970).

  11. 11.

    T. Ninomiya, inTreatise on Materials Science and Technology, H. Herman, ed. (Academic Press, New York, 1975), Vol. 8, p. 1.

  12. 12.

    A. C. Anderson, inDislocations in Solids, F. R. N. Nabarro, ed. (North-Holland, New York, 1983), Vol. 6. p. 235.

  13. 13.

    G. A. Northrop, E. J. Cotts. A. C. Anderson, and J. P. Wolfe,Phys. Rev. B 27, 6395 (1983).

  14. 14.

    I. S. Yang and A. C. Anderson,Phys. Rev. B 39, 13498 (1989).

  15. 15.

    W. Wasserbach,Mat. Sci. Eng. 96, 167 (1987).

  16. 16.

    M. Sato and K. Sumino,J. Phys. Soc. Jpn. 36, 1075 (1974).

  17. 17.

    M. P. Zaitlin and A. C. Anderson, Phys. Rev. B10, 580 (1974).

  18. 18.

    T. Suzuki, K. Nakamura, and K. Suzuki,Seisan Kenkyo 26, 2 (1974).

  19. 19.

    T. Suzuki, inPhonon Scattering in Condensed Matter V, A. C. Anderson and J. P. Wolf, eds. (Springer-Verlag, Berlin, 1986), p. 263.

  20. 20.

    R. J. Soulen,J. Phys. (Paris)39, C6–1166 (1978); J. F. SchoobyJ. Phys. (Paris)39, C6-1169 (1978).

  21. 21.

    A. C. Anderson, R. E. Peterson, and J. E. Robichaus,Rev. Sci. Instrum. 41, 528 (1976).

  22. 22.

    G. Schoeck,J. Appl. Phys. 33, 1745 (1962).

  23. 23.

    K. Kojima and K. Sumino,J. Phys. Soc. Jpn. 26, 1213 (1969).

  24. 24.

    K. Sumino and K. Kojima,Crys. Lattice Defects 2, 147 (1971); 159 (1971).

  25. 25.

    U. Jendrich and P. Haasen,Phys. Stat. Sol. (a)108, 553 (1988).

  26. 26.

    H. J. McSkimin and P. Andreatch Jr.,J. Appl. Phys. 34, 651 (1963).

  27. 27.

    J. A. Garber, Ph.D. Thesis, University of Illinois, 1972 (unpublished).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhu, D., Anderson, A.C. Scattering of phonons by sessile dislocations in deformed germanium. J Low Temp Phys 82, 37–47 (1991). https://doi.org/10.1007/BF00681550

Download citation

Keywords

  • Experimental Data
  • Thermal Conductivity
  • Static Model
  • Magnetic Material
  • Germanium