Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Self-consistent phonons in configurationally disordered quantum crystals. I. Theory

Abstract

A generalization of the coherent potential approximation (CPA) to strongly anharmonic systems is presented that takes into account the static relaxations in the vicinity of each defect and the changes in the averaged mean lattice constant and in the mean square fluctuations. In the limits of a perturbed classical, harmonic crystal or an ideal, anharmonic crystal the theory reduces to the conventional CPA and the self-consistent phonon results, respectively. For the numerical solution an approximation is used that starts from the renormalized harmonic phonons in ideal crystals. As an example, some characteristic results are discussed for the systems ofoD2 orpH2 in Ne.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    N. R. Werthamer, inRare Gas Crystals, M. L. Klein and J. A. Venables, eds. (Academic Press, New York, 1976), Vol. 1, pp. 265–300.

  2. 2.

    T. R. Koehler, inDynamical Properties of Solids, G. K. Horton and A. A. Maradudin, eds. (North-Holland, Amsterdam, 1975), Vol. 2, pp. 1–104.

  3. 3.

    H. Horner, inDynamical Properties of Solids, G. K. Horton and A. A. Maradudin, eds. (North-Holland, Amsterdam, 1974), Vol. 1, pp. 451–498.

  4. 4.

    R. J. Elliot, J. A. Krumhansl, and P. L. Leath,Rev. Mod. Phys. 46, 465 (1974).

  5. 5.

    P. Soven,Phys. Rev. 156, 809 (1967); D. W. Taylor,Phys. Rev. 156, 1017 (1967).

  6. 6.

    A. Mookerjee, V. Kumar, and V. K. Srivastava,J. Phys. C 15, 1939 (1982).

  7. 7.

    T. Kaplan, P. L. Leath, L. J. Gray, and H. W. Diehl,Phys. Rev. B21, 4230 (1980).

  8. 8.

    H. W. Diehl and P. L. Leath,Phys. Rev. B 19, 587 (1979).

  9. 9.

    C. M. Varma,Phys. Rev. A 4, 313 (1971).

  10. 10.

    G. S. Zavt and S. P. Reifman,JETP Lett. 15, 523 (1972).

  11. 11.

    N. M. Plakida, V. L. Akzenov, Kh. Breter, Ya. M. Koval'ski, and V. B. Priezzkev,Sov. Phys. Solid State 18, 1704 (1977).

  12. 12.

    N. Gillis, N. R. Werthamer, and T. R. Koehler,Phys. Rev. 165, 951 (1968).

  13. 13.

    H. W. Diehl and W. Biem, inProceedings of the International Conference on Lattice Dynamics, M. Balkanski, eds. (Flammarion Sciences, Paris, 1978), pp. 356–358.

  14. 14.

    L. P. Kadanoff and G. Baym,Quantum Statistical Mechanics (W. A. Benjamin, New York, 1962), Chapter 5.

  15. 15.

    L. Schwartz, F. Brouers, A. V. Vedyayev, and H. Ehrenreich,Phys. Rev. B 4, 3383 (1971).

  16. 16.

    H. Ehrenreich and L. M. Schwartz, inSolid State Physics, Vol. 31, M. Ehrenreich, F. Seitz, and D. Turnbull, eds. (Academic Press, New York, 1976), pp. 150–286.

  17. 17.

    N. R. Werthamer,Phys. Rev. B 1, 572 (1970).

  18. 18.

    H. Kanzaki,J. Phys. Chem. Solids 2, 24 (1957).

  19. 19.

    L. H. Nosanow,Phys. Rev. 146, 120 (1966).

  20. 20.

    H. Horner,J. Low Temp. Phys. 8, 511 (1972).

  21. 21.

    H. Horner,Z. Physik 242, 432 (1971).

  22. 22.

    V. V. Goldman,Phys. Rev. B 20, 4478 (1979).

  23. 23.

    R. J. Roberts, E. Rojas, and J. G. Daunt,J. Low Temp. Phys. 34, 3 (1979); A. Michels, W. de Graaf, and C. A. Ten Seldam,Physica 26, 393 (1960).

  24. 24.

    C. M. Chen, P. E. Siska, and Y. T. Lee,J. Chem. Phys. 59, 601 (1973); C. Y. Ng, Y. T. Lee, and J. A. Barker,J. Chem. Phys. 61, 1996 (1974); W. Hogervorst,Physica 51, 59 (1971).

  25. 25.

    R. Berman and D. M. Livesley,J. Phys. C 14, L 945 (1981).

Download references

Author information

Additional information

Deceased.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Menn, K., Biem, W. Self-consistent phonons in configurationally disordered quantum crystals. I. Theory. J Low Temp Phys 57, 1–15 (1984). https://doi.org/10.1007/BF00681513

Download citation

Keywords

  • Magnetic Material
  • Lattice Constant
  • Potential Approximation
  • Characteristic Result
  • Static Relaxation