Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The dielectric formalism for3He-4He mixtures

Abstract

The microscopic theory of3He-4He mixtures with a Bose condensate is formulated in terms of the dielectric formalism. By expressing all correlation functions in terms of proper, irreducible contributions, one sets the stage for approximate calculations that will be consistent with various exact sum rules and Ward identities, just as in the case of pure4He. The present analysis includes a symmetry-breaking term that allows us to deal with the continuity equations properly, and is valid at finite temperature. As a specific application, we express the normal fluid density ρ N in terms of the static4He current-current correlation function. We also give the first formal proof that in the presence of a moving condensate, the3He atoms make no direct contribution to the superfluid flow.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. K. Ma and C. W. Woo,Phys. Rev. 159, 165 (1967).

  2. 2.

    I. Kondor and P. Szépfalusy,Acta Phys. Hung. 24, 81 (1968).

  3. 3.

    V. K. Wong and H. Gould,Ann. Phys. (N.Y.)83, 252 (1974).

  4. 4.

    V. K. Wong and H. Gould,Phys. Rev. B14, 3961 (1976).

  5. 5.

    E. Talbot and A. Griffin,Ann. Phys. (N.Y.)151, 71 (1983).

  6. 6.

    E. Talbot, Ph. D. Thesis, University of Toronto (1983), unpublished.

  7. 7.

    P. C. Hohenberg and P. C. Martin,Ann. Phys. (N.Y.)34, 291 (1965).

  8. 8.

    D. L. Bartley and V. K. Wong,Phys. Rev. B12, 3775 (1975).

  9. 9.

    E. Talbot and A. Griffin,Phys. Rev. B29, 2531 (1984).

  10. 10.

    G. Baym and C. Pethick, inThe Physics of Liquid and Solid Helium, Part II, K. H. Bennemann and J. B. Ketterson, eds. (Wiley, New York, 1978), p. 123.

  11. 11.

    J. Ruvalds, inQuantum Liquids, J. Ruvalds and T. Regge, eds. (North-Holland, New York, 1978), p. 263.

  12. 12.

    C. Ebner and D. O. Edwards,Phys. Rep. 1, 77 (1971).

  13. 13.

    I. M. Khalatnikov,An Introduction to the Theory of Superfluidity (Benjamin, New York, 1965).

  14. 14.

    N. N. Bogoliubov,Lectures on Quantum Statistics, Vol. 2 (Gordon and Breach, New York, 1970).

  15. 15.

    N. N. Bogoliubov,Physica 26, S1 (1960).

  16. 16.

    A. L. Fetter and J. D. Walecka,Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971).

  17. 17.

    K. Skold, C. A. Pelizzari, R. Kleb, and G. E. Ostrowski,Phys. Rev. Lett. 37, 842 (1976).

  18. 18.

    P. A. Hilton, R. Scherm, and W. G. Stirling,J. Low Temp. Phys. 27, 851 (1977).

  19. 19.

    K. S. Pedersen and R. A. Cowley,J. Phys. C: Solid State Phys. 16, 2671 (1983).

  20. 20.

    J. Gavoret and P. Nozières,Ann. Phys. (N.Y.)28, 349 (1964).

  21. 21.

    P. Szépfalusy and I. Kondor,Ann. Phys. (N.Y.)82, 1 (1974).

  22. 22.

    D. L. Bartley, J. E. Robinson, and V. K. Wong,J. Low Temp. Phys. 12, 71 (1973).

  23. 23.

    G. Baym, inMathematical Methods in Solid State and Superfluid Theory, R. C. Clark and G. H. Derrick, eds. (Oliver and Boyd, Edinburgh, 1969), p. 121.

  24. 24.

    H. T. Tan, C. W. Woo, and F. Y. Wu,J. Low Temp. Phys. 5, 261 (1971).

  25. 25.

    E. Talbot and A. Griffin,Phys. Rev. B29 (1984).

  26. 26.

    P. Nozières,Theory of Interacting Fermi Systems (Benjamin, New York, 1964).

  27. 27.

    L. D. Landau and I. Pomeranchuk,Dokl. Akad. Nauk SSSR 59, 669 (1948) [English translation, inCollected Works of L. D. Landau, D. Ter Haar, ed. (Gordon and Breach, New York, 1965), p. 469].

  28. 28.

    A. J. Leggett,Phys. Rev. 140, 1867 (1965).

  29. 29.

    A. J. Leggett,Ann. Phys. (N.Y.)46, 76 (1968).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Talbot, E., Griffin, A. The dielectric formalism for3He-4He mixtures. J Low Temp Phys 56, 141–165 (1984). https://doi.org/10.1007/BF00681459

Download citation

Keywords

  • Correlation Function
  • Fluid Density
  • Ward Identity
  • Finite Temperature
  • Formal Proof